Martin J Loessner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6301367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering therapeutic phages for enhanced antibacterial efficacy. Current Opinion in Virology, 2022, 52, 182-191.	2.6	36
2	Bacteriophage <scp>S6</scp> requires bacterial cellulose for <i>Erwinia amylovora</i> infection. Environmental Microbiology, 2022, 24, 3436-3450.	1.8	11
3	Linker-Improved Chimeric Endolysin Selectively Kills Staphylococcus aureus <i>In Vitro</i> , on Reconstituted Human Epidermis, and in a Murine Model of Skin Infection. Antimicrobial Agents and Chemotherapy, 2022, 66, e0227321.	1.4	12
4	Ampicillin Treatment of Intracellular Listeria monocytogenes Triggers Formation of Persistent, Drug-Resistant L-Form Cells. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	4
5	Enhancing phage therapy through synthetic biology and genome engineering. Current Opinion in Biotechnology, 2021, 68, 151-159.	3.3	72
6	Bacteriophage endolysins — extending their application to tissues and the bloodstream. Current Opinion in Biotechnology, 2021, 68, 51-59.	3.3	45
7	Structural and functional characterization of the receptor binding proteins of Escherichia coli O157 phages EP75 and EP335. Computational and Structural Biotechnology Journal, 2021, 19, 3416-3426.	1.9	13
8	Structural basis for recognition of bacterial cell wall teichoic acid by pseudo-symmetric SH3b-like repeats of a viral peptidoglycan hydrolase. Chemical Science, 2021, 12, 576-589.	3.7	11
9	Whole Genome Sequence Analysis of Phage-Resistant Listeria monocytogenes Serotype 1/2a Strains from Turkey Processing Plants. Pathogens, 2021, 10, 199.	1.2	10
10	Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins. Current Opinion in Biotechnology, 2021, 68, 272-281.	3.3	42
11	Beyond antibacterials – exploring bacteriophages as antivirulence agents. Current Opinion in Biotechnology, 2021, 68, 166-173.	3.3	28
12	Rapid Clinical Screening of Burkholderia pseudomallei Colonies by a Bacteriophage Tail Fiber-Based Latex Agglutination Assay. Applied and Environmental Microbiology, 2021, 87, e0301920.	1.4	7
13	Glucose Decoration on Wall Teichoic Acid Is Required for Phage Adsorption and InlB-Mediated Virulence in Listeria ivanovii. Journal of Bacteriology, 2021, 203, e0013621.	1.0	2
14	An Enzybiotic Regimen for the Treatment of Methicillin-Resistant Staphylococcus aureus Orthopaedic Device-Related Infection. Antibiotics, 2021, 10, 1186.	1.5	6
15	Bacillus subtilis YngB contributes to wall teichoic acid glucosylation and glycolipid formation during anaerobic growth. Journal of Biological Chemistry, 2021, 296, 100384.	1.6	10
16	Deimmunization of protein therapeutics – Recent advances in experimental and computational epitope prediction and deletion. Computational and Structural Biotechnology Journal, 2021, 19, 315-329.	1.9	31
17	Multi-species host range of staphylococcal phages isolated from wastewater. Nature Communications, 2021, 12, 6965.	5.8	50
18	Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nature Communications, 2021, 12, 7036.	5.8	33

#	Article	IF	CITATIONS
19	Engineering of Long-Circulating Peptidoglycan Hydrolases Enables Efficient Treatment of Systemic Staphylococcus aureus Infection. MBio, 2020, 11, .	1.8	17
20	Reporter Phage-Based Detection of Bacterial Pathogens: Design Guidelines and Recent Developments. Viruses, 2020, 12, 944.	1.5	48
21	Glycotyping and Specific Separation of Listeria monocytogenes with a Novel Bacteriophage Protein Tool Kit. Applied and Environmental Microbiology, 2020, 86, .	1.4	31
22	<i>Alteromonas</i> Myovirus V22 Represents a New Genus of Marine Bacteriophages Requiring a Tail Fiber Chaperone for Host Recognition. MSystems, 2020, 5, .	1.7	15
23	GtcA is required for LTA glycosylation in Listeria monocytogenes serovar 1/2a and Bacillus subtilis. Cell Surface, 2020, 6, 100038.	1.5	18
24	Galactosylated wall teichoic acid, but not lipoteichoic acid, retains InlB on the surface of serovar 4b <i>Listeria monocytogenes</i> . Molecular Microbiology, 2020, 113, 638-649.	1.2	17
25	Point-of-care testing system for digital single cell detection of MRSA directly from nasal swabs. Lab on A Chip, 2020, 20, 2549-2561.	3.1	44
26	A Proteogenomic Resource Enabling Integrated Analysis of <i>Listeria</i> Genotype–Proteotype–Phenotype Relationships. Journal of Proteome Research, 2020, 19, 1647-1662.	1.8	10
27	Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages from soil. Microbiome, 2020, 8, 17.	4.9	52
28	Structure and function of <i>Listeria</i> teichoic acids and their implications. Molecular Microbiology, 2020, 113, 627-637.	1.2	37
29	Engineered Reporter Phages for Rapid Bioluminescence-Based Detection and Differentiation of Viable <i>Listeria</i> Cells. Applied and Environmental Microbiology, 2020, 86, .	1.4	45
30	Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus. MBio, 2020, 11, .	1.8	50
31	<i>In vitro</i> quantification of botulinum neurotoxin type A1 using immobilized nerve cell-mimicking nanoreactors in a microfluidic platform. Analyst, The, 2019, 144, 5755-5765.	1.7	5
32	Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion. PLoS Pathogens, 2019, 15, e1008032.	2.1	78
33	Reprogramming Bacteriophage Host Range through Structure-Guided Design of Chimeric Receptor Binding Proteins. Cell Reports, 2019, 29, 1336-1350.e4.	2.9	135
34	A hybrid sub-lineage of Listeria monocytogenes comprising hypervirulent isolates. Nature Communications, 2019, 10, 4283.	5.8	76
35	Modified Bacteriophage Tail Fiber Proteins for Labeling, Immobilization, Capture, and Detection of Bacteria. Methods in Molecular Biology, 2019, 1918, 67-86.	0.4	16
36	Structure and transformation of bacteriophage A511 baseplate and tail upon infection of <i>Listeria</i> Âcells. EMBO Journal, 2019, 38, .	3.5	34

#	Article	IF	CITATIONS
37	Engineering Bacteriophages as Versatile Biologics. Trends in Microbiology, 2019, 27, 355-367.	3.5	118
38	Structural insights into the binding and catalytic mechanisms of the <i>Listeria monocytogenes</i> bacteriophage glycosyl hydrolase PlyP40. Molecular Microbiology, 2018, 108, 128-142.	1.2	12
39	Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 567-572.	3.3	155
40	Corrected and Republished from: Identification of Peptidoglycan Hydrolase Constructs with Synergistic Staphylolytic Activity in Cow's Milk. Applied and Environmental Microbiology, 2018, 84, .	1.4	23
41	Polyphenol-Binding Amyloid Fibrils Self-Assemble into Reversible Hydrogels with Antibacterial Activity. ACS Nano, 2018, 12, 3385-3396.	7.3	210
42	Ultrasensitive and Fast Diagnostics of Viable Listeria Cells by CBD Magnetic Separation Combined with A511::luxAB Detection. Viruses, 2018, 10, 626.	1.5	31
43	Improved Biodistribution and Extended Serum Half-Life of a Bacteriophage Endolysin by Albumin Binding Domain Fusion. Frontiers in Microbiology, 2018, 9, 2927.	1.5	38
44	Salmonella Phage S16 Tail Fiber Adhesin Features a Rare Polyglycine Rich Domain for Host Recognition. Structure, 2018, 26, 1573-1582.e4.	1.6	69
45	Complete Genome Sequences of Erwinia amylovora Phages vB_EamP-S2 and vB_EamM-Bue1. Microbiology Resource Announcements, 2018, 7, .	0.3	10
46	Erwinia amylovora phage vB_EamM_Y3 represents another lineage of hairy Myoviridae. Research in Microbiology, 2018, 169, 505-514.	1.0	22
47	Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages. Viruses, 2018, 10, 397.	1.5	76
48	A functional type II-A CRISPR–Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage. Nucleic Acids Research, 2018, 46, 6920-6933.	6.5	58
49	Production of Bacteriophages by Listeria Cells Entrapped in Organic Polymers. Viruses, 2018, 10, 324.	1.5	7
50	Synergistic Removal of Static and Dynamic Staphylococcus aureus Biofilms by Combined Treatment with a Bacteriophage Endolysin and a Polysaccharide Depolymerase. Viruses, 2018, 10, 438.	1.5	59
51	The absence of N-acetylglucosamine in wall teichoic acids of Listeria monocytogenes modifies biofilm architecture and tolerance to rinsing and cleaning procedures. PLoS ONE, 2018, 13, e0190879.	1.1	25
52	Identification of Peptidoglycan Hydrolase Constructs with Synergistic Staphylolytic Activity in Cow's Milk. Applied and Environmental Microbiology, 2017, 83, .	1.4	15
53	Engineering of Bacteriophages Y2:: <i>dpoL1-C</i> and Y2:: <i>luxAB</i> for Efficient Control and Rapid Detection of the Fire Blight Pathogen, Erwinia amylovora. Applied and Environmental Microbiology, 2017, 83, .	1.4	70
54	Modified Bacteriophage S16 Long Tail Fiber Proteins for Rapid and Specific Immobilization and Detection of Salmonella Cells. Applied and Environmental Microbiology, 2017, 83, .	1.4	59

#	Article	IF	CITATIONS
55	TetRâ€dependent gene regulation in intracellular <i>Listeria monocytogenes</i> demonstrates the spatiotemporal surface distribution of ActA. Molecular Microbiology, 2017, 105, 413-425.	1.2	4
56	Structural and functional diversity in Listeria cell wall teichoic acids. Journal of Biological Chemistry, 2017, 292, 17832-17844.	1.6	55
57	Colloidal shuttles for programmable cargo transport. Nature Communications, 2017, 8, 1872.	5.8	28
58	Genome Sequences of Five Nonvirulent <i>Listeria monocytogenes</i> Serovar 4 Strains. Genome Announcements, 2016, 4, .	0.8	4
59	Proliferation of Listeria monocytogenes L-form cells by formation of internal and external vesicles. Nature Communications, 2016, 7, 13631.	5.8	47
60	Nerve cell-mimicking liposomes as biosensor for botulinum neurotoxin complete physiological activity. Toxicology and Applied Pharmacology, 2016, 313, 16-23.	1.3	6
61	Magnetically Driven Silver oated Nanocoils for Efficient Bacterial Contact Killing. Advanced Functional Materials, 2016, 26, 1063-1069.	7.8	118
62	Bacteriophage endolysins: applications for food safety. Current Opinion in Biotechnology, 2016, 37, 76-87.	3.3	157
63	Nonstable <i>Staphylococcus aureus</i> Small-Colony Variants Are Induced by Low pH and Sensitized to Antimicrobial Therapy by Phagolysosomal Alkalinization. Journal of Infectious Diseases, 2016, 213, 305-313.	1.9	61
64	The Absence of a Mature Cell Wall Sacculus in Stable Listeria monocytogenes L-Form Cells Is Independent of Peptidoglycan Synthesis. PLoS ONE, 2016, 11, e0154925.	1.1	12
65	Bacteriophage predation promotes serovar diversification in <scp><i>L</i></scp> <i>isteria monocytogenes</i> . Molecular Microbiology, 2015, 97, 33-46.	1.2	54
66	Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. Journal of Antimicrobial Chemotherapy, 2015, 70, 1453-1465.	1.3	122
67	Genome Sequences of the Listeria ivanovii subsp. ivanovii Type Strain and Two Listeria ivanovii subsp. Iondoniensis Strains. Genome Announcements, 2015, 3, .	0.8	14
68	Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids. Virology, 2015, 477, 110-118.	1.1	47
69	Protection of <i>Erwinia amylovora</i> bacteriophage Y2 from UV-induced damage by natural compounds. Bacteriophage, 2015, 5, e1074330.	1.9	40
70	Putative type 1 thymidylate synthase and dihydrofolate reductase as signature genes of a novel bastille-like group of phages in the subfamily Spounavirinae. BMC Genomics, 2015, 16, 582.	1.2	26
71	Metabolite profiling and peptidoglycan analysis of transient cell wallâ€deficient bacteria in a new <scp><i>E</i></scp> <i>scherichia coli</i> model system. Environmental Microbiology, 2015, 17, 1586-1599.	1.8	17
72	Cell-wall deficient L. monocytogenes L-forms feature abrogated pathogenicity. Frontiers in Cellular and Infection Microbiology, 2014, 4, 60.	1.8	11

#	Article	IF	CITATIONS
73	Application of bacteriophages for detection of foodborne pathogens. Bacteriophage, 2014, 4, e28137.	1.9	143
74	Genome Sequences of Three Frequently Used Listeria monocytogenes and Listeria ivanovii Strains. Genome Announcements, 2014, 2, .	0.8	9
75	Smoking Cessation Alters Intestinal Microbiota. Inflammatory Bowel Diseases, 2014, 20, 1496-1501.	0.9	142
76	The tailâ€associated depolymerase of <i><scp>E</scp>rwinia amylovora</i> phage <scp>L1</scp> mediates host cell adsorption and enzymatic capsule removal, which can enhance infection by other phage. Environmental Microbiology, 2014, 16, 2168-2180.	1.8	45
77	Acanthamoeba release compounds which promote growth of Listeria monocytogenes and other bacteria. Applied Microbiology and Biotechnology, 2014, 98, 3091-3097.	1.7	12
78	<scp><i>L</i></scp> <i>isteria</i> phage <scp>A</scp> 511, a model for the contractile tail machineries of <scp>SPO</scp> 1â€related bacteriophages. Molecular Microbiology, 2014, 92, 84-99.	1.2	55
79	The odd one out: Bacillus ACT bacteriophage CP-51 exhibits unusual properties compared to related Spounavirinae W.Ph. and Bastille. Virology, 2014, 462-463, 299-308.	1.1	15
80	Detection of Bacteria with Bioluminescent Reporter Bacteriophage. Advances in Biochemical Engineering/Biotechnology, 2014, 144, 155-171.	0.6	10
81	Development of a rapid detection system for opportunistic pathogenic Cronobacter spp. in powdered milk products. Food Microbiology, 2014, 42, 19-25.	2.1	30
82	Phages of Listeria offer novel tools for diagnostics and biocontrol. Frontiers in Microbiology, 2014, 5, 159.	1.5	36
83	The Listeria Cell Wall and Associated Carbohydrate Polymers. Methods in Molecular Biology, 2014, 1157, 129-140.	0.4	3
84	Use of Bacteriophage Cell Wall-Binding Proteins for Rapid Diagnostics of Listeria. Methods in Molecular Biology, 2014, 1157, 141-156.	0.4	15
85	Novel Giant Siphovirus from Bacillus anthracis Features Unusual Genome Characteristics. PLoS ONE, 2014, 9, e85972.	1.1	22
86	Whole genome sequencing and comparative genomic analyses of two Vibrio cholerae O139 Bengal-specific Podovirusesto other N4-like phages reveal extensive genetic diversity. Virology Journal, 2013, 10, 165.	1.4	38
87	<i><scp>A</scp>canthamoeba</i> feature a unique backpacking strategy to trap and feed on <i><scp>L</scp>isteria monocytogenes</i> and other motile bacteria. Environmental Microbiology, 2013, 15, 433-446.	1.8	20
88	Genome Sequence of Salmonella bongori Strain N268-08, a Rare Clinical Isolate. Genome Announcements, 2013, 1, .	0.8	2
89	Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in Humans. PLoS ONE, 2013, 8, e59260.	1.1	305
90	Long tail fibres of the novel broadâ€hostâ€range <scp>T</scp> â€even bacteriophage <scp>S</scp> 16 specifically recognize <i><scp>S</scp>almonella</i> <scp>OmpC</scp> . Molecular Microbiology, 2013, 87, 818-834.	1.2	102

#	Article	IF	CITATIONS
91	<i>Listeria</i> phages. Bacteriophage, 2013, 3, e26861.	1.9	70
92	Inducible Clostridium perfringens bacteriophages $\hat{l} S9$ and $\hat{l} S63.$ Bacteriophage, 2012, 2, 89-97.	1.9	16
93	A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst, The, 2012, 137, 5749.	1.7	114
94	How did bacterial ancestors reproduce? Lessons from Lâ€ f orm cells and giant lipid vesicles. BioEssays, 2012, 34, 1078-1084.	1.2	45
95	Bacteriophage P70: Unique Morphology and Unrelatedness to Other Listeria Bacteriophages. Journal of Virology, 2012, 86, 13099-13102.	1.5	27
96	Wall Teichoic Acids Restrict Access of Bacteriophage Endolysin Ply118, Ply511, and PlyP40 Cell Wall Binding Domains to the Listeria monocytogenes Peptidoglycan. Journal of Bacteriology, 2012, 194, 6498-6506.	1.0	62
97	Bacteriophage endolysins as novel antimicrobials. Future Microbiology, 2012, 7, 1147-1171.	1.0	554
98	Intracellular Vesicles as Reproduction Elements in Cell Wall-Deficient L-Form Bacteria. PLoS ONE, 2012, 7, e38514.	1.1	36
99	Protein Tyrosine Phosphatase Nonreceptor Type 2 Regulates Autophagosome Formation in Human Intestinal Cells. Inflammatory Bowel Diseases, 2012, 18, 1287-1302.	0.9	60
100	Listeria monocytogenes tyrosine phosphatases affect wall teichoic acid composition and phage resistance. FEMS Microbiology Letters, 2012, 326, 151-160.	0.7	12
101	Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. International Journal of Food Microbiology, 2012, 154, 66-72.	2.1	178
102	Listeria bacteriophage peptidoglycan hydrolases feature high thermoresistance and reveal increased activity after divalent metal cation substitution. Applied Microbiology and Biotechnology, 2012, 93, 633-643.	1.7	62
103	Rhamnose-Inducible Gene Expression in Listeria monocytogenes. PLoS ONE, 2012, 7, e43444.	1.1	16
104	Protein Tyrosine Phosphatase Non-Receptor Type 2 Regulates NLRP3 Inflammasome Activation. Gastroenterology, 2011, 140, S-633.	0.6	0
105	The Crohn's Disease Associated Variant of the Protein Tyrosine Phosphatase Non-Receptor Type 2 Gene Affects Cellular Responses to Invading Listeria Monocytogenes. Gastroenterology, 2011, 140, S-496.	0.6	0
106	Rapid Analysis of Listeria monocytogenes Cell Wall Teichoic Acid Carbohydrates by ESI-MS/MS. PLoS ONE, 2011, 6, e21500.	1.1	27
107	The cell wall binding domain of <i>Listeria</i> bacteriophage endolysin PlyP35 recognizes terminal GlcNAc residues in cell wall teichoic acid. Molecular Microbiology, 2011, 81, 1419-1432.	1.2	88
108	Domain shuffling and module engineering of <i>Listeria</i> phage endolysins for enhanced lytic activity and binding affinity. Microbial Biotechnology, 2011, 4, 651-662.	2.0	101

#	Article	IF	CITATIONS
109	Novel Virulent and Broad-Host-Range Erwinia amylovora Bacteriophages Reveal a High Degree of Mosaicism and a Relationship to Enterobacteriaceae Phages. Applied and Environmental Microbiology, 2011, 77, 5945-5954.	1.4	104
110	Genome Sequence of Listeria monocytogenes Scott A, a Clinical Isolate from a Food-Borne Listeriosis Outbreak. Journal of Bacteriology, 2011, 193, 4284-4285.	1.0	74
111	Bacteriophage biocontrol of <i>Listeria monocytogenes</i> on soft ripened white mold and red-smear cheeses. Bacteriophage, 2011, 1, 94-100.	1.9	105
112	Reporter bacteriophage A511::: <i>celB</i> transduces a hyperthermostable glycosidase from <i>Pyrococcus furiosus</i> for rapid and simple detection of viable Listeria cells. Bacteriophage, 2011, 1, 143-151.	1.9	30
113	Bacteriophage for Biocontrol of Foodborne Pathogens: Calculations and Considerations. Current Pharmaceutical Biotechnology, 2010, 11, 58-68.	0.9	286
114	The SPO1-related bacteriophages. Archives of Virology, 2010, 155, 1547-1561.	0.9	91
115	<i>Brochothrix thermosphacta</i> Bacteriophages Feature Heterogeneous and Highly Mosaic Genomes and Utilize Unique Prophage Insertion Sites. Journal of Bacteriology, 2010, 192, 5441-5453.	1.0	39
116	The Opportunistic Pathogen <i>Listeria monocytogenes</i> : Pathogenicity and Interaction with the Mucosal Immune System. International Journal of Inflammation, 2010, 2010, 1-12.	0.9	67
117	The Case of Botulinum Toxin in Milk: Experimental Data. Applied and Environmental Microbiology, 2010, 76, 3293-3300.	1.4	47
118	Evaluation of Paramagnetic Beads Coated with RecombinantListeriaPhage Endolysin–Derived Cell-Wall-Binding Domain Proteins for Separation ofListeria monocytogenesfrom Raw Milk in Combination with Culture-Based and Real-Time Polymerase Chain Reaction–Based Quantification. Foodborne Pathogens and Disease, 2010, 7, 1019-1024.	0.8	54
119	Rapid Multiplex Detection and Differentiation of <i>Listeria</i> Cells by Use of Fluorescent Phage Endolysin Cell Wall Binding Domains. Applied and Environmental Microbiology, 2010, 76, 5745-5756.	1.4	148
120	Complete Nucleotide Sequence and Molecular Characterization of Bacillus Phage TP21 and its Relatedness to Other Phages with the Same Name. Viruses, 2010, 2, 961-971.	1.5	20
121	Virulent Bacteriophage for Efficient Biocontrol of <i>Listeria monocytogenes</i> in Ready-To-Eat Foods. Applied and Environmental Microbiology, 2009, 75, 93-100.	1.4	378
122	Comparative Genome Analysis of <i>Listeria</i> Bacteriophages Reveals Extensive Mosaicism, Programmed Translational Frameshifting, and a Novel Prophage Insertion Site. Journal of Bacteriology, 2009, 191, 7206-7215.	1.0	133
123	Role of Cold Shock Proteins in Growth of <i>Listeria monocytogenes</i> under Cold and Osmotic Stress Conditions. Applied and Environmental Microbiology, 2009, 75, 1621-1627.	1.4	189
124	<i>Listeria monocytogenes</i> <scp>l</scp> â€forms respond to cell wall deficiency by modifying gene expression and the mode of division. Molecular Microbiology, 2009, 73, 306-322.	1.2	61
125	Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material. Applied and Environmental Microbiology, 2009, 75, 2973-2976.	1.4	342
126	The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144. Biochemical and Biophysical Research Communications, 2009, 383, 187-191.	1.0	68

#	Article	IF	CITATIONS
127	Structural analysis of the <scp>L</scp> -alanoyl- <scp>D</scp> -glutamate endopeptidase domain of <i>Listeria</i> bacteriophage endolysin Ply500 reveals a new member of the LAS peptidase family. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 644-650.	2.5	45
128	Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nature Structural and Molecular Biology, 2008, 15, 939-947.	3.6	347
129	PEGylation of bacteriophages increases blood circulation time and reduces Tâ€helper type 1 immune response. Microbial Biotechnology, 2008, 1, 247-257.	2.0	93
130	Isolation and characterisation of two novel coliphages with high potential to control antibiotic-resistant pathogenic Escherichia coli (EHEC and EPEC). International Journal of Antimicrobial Agents, 2008, 31, 152-157.	1.1	39
131	Bacteriophage: Powerful Tools for the Detection of Bacterial Pathogens. , 2008, , 731-754.		13
132	<i>Enterobacter sakazakii</i> Invasion in Human Intestinal Caco-2 Cells Requires the Host Cell Cytoskeleton and Is Enhanced by Disruption of Tight Junction. Infection and Immunity, 2008, 76, 562-570.	1.0	84
133	The Terminally Redundant, Nonpermuted Genome of <i>Listeria</i> Bacteriophage A511: a Model for the SPO1-Like Myoviruses of Gram-Positive Bacteria. Journal of Bacteriology, 2008, 190, 5753-5765.	1.0	122
134	Use of High-Affinity Cell Wall-Binding Domains of Bacteriophage Endolysins for Immobilization and Separation of Bacterial Cells. Applied and Environmental Microbiology, 2007, 73, 1992-2000.	1.4	153
135	Inactivation of Lgt Allows Systematic Characterization of Lipoproteins from Listeria monocytogenes. Journal of Bacteriology, 2007, 189, 313-324.	1.0	82
136	Pathogenomics of Listeria spp International Journal of Medical Microbiology, 2007, 297, 541-557.	1.5	84
137	Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. International Journal of Food Microbiology, 2007, 115, 195-203.	2.1	101
138	Antimicrobial activity of lysostaphin and a Listeria monocytogenes bacteriophage endolysin produced and secreted by lactic acid bacteria. Systematic and Applied Microbiology, 2007, 30, 58-67.	1.2	60
139	Application of bacteriophages for detection and control of foodborne pathogens. Applied Microbiology and Biotechnology, 2007, 76, 513-519.	1.7	260
140	Bacteriophages of Listeria. , 2007, , 265-279.		3
141	The Crystal Structure of the Bacteriophage PSA Endolysin Reveals a Unique Fold Responsible for Specific Recognition of Listeria Cell Walls. Journal of Molecular Biology, 2006, 364, 678-689.	2.0	103
142	Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cellular Microbiology, 2006, 8, 107-119.	1.1	117
143	Biochemical evidence for the proteolytic degradation of infectious prion protein PrPsc in hamster brain homogenates by foodborne bacteria. Systematic and Applied Microbiology, 2006, 29, 165-171.	1.2	23
144	Bacteriophage endolysins — current state of research and applications. Current Opinion in Microbiology, 2005, 8, 480-487.	2.3	455

#	Article	IF	CITATIONS
145	Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Regulatory Toxicology and Pharmacology, 2005, 43, 301-312.	1.3	375
146	Distribution and composition of the lysis cassette ofLactococcus lactisphages and functional analysis of bacteriophage ul36 holin. FEMS Microbiology Letters, 2004, 233, 37-43.	0.7	30
147	Complete nucleotide sequence and molecular characterization of two lytic Staphylococcus aureus phages: 44AHJD and P68. FEMS Microbiology Letters, 2003, 219, 275-283.	0.7	60
148	Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis. Molecular Microbiology, 2003, 50, 303-317.	1.2	111
149	Functional regulation of the Listeria monocytogenes bacteriophage A118 holin by an intragenic inhibitor lacking the first transmembrane domain. Molecular Microbiology, 2003, 48, 173-186.	1.2	23
150	Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Therapy, 2003, 10, 2036-2045.	2.3	83
151	A Pediocin-Producing Lactobacillus plantarum Strain Inhibits Listeria monocytogenes in a Multispecies Cheese Surface Microbial Ripening Consortium. Applied and Environmental Microbiology, 2003, 69, 1854-1857.	1.4	88
152	Construction, Characterization, and Use of Two Listeria monocytogenes Site-Specific Phage Integration Vectors. Journal of Bacteriology, 2002, 184, 4177-4186.	1.0	435
153	The Murein Hydrolase of the Bacteriophage φ3626 Dual Lysis System Is Active against All Tested <i>Clostridium perfringens</i> Strains. Applied and Environmental Microbiology, 2002, 68, 5311-5317.	1.4	120
154	Genomic Analysis of Clostridium perfringens Bacteriophage φ3626, Which Integrates into guaA and Possibly Affects Sporulation. Journal of Bacteriology, 2002, 184, 4359-4368.	1.0	80
155	C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Molecular Microbiology, 2002, 44, 335-349.	1.2	322
156	Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes : implications for phage evolution. Molecular Microbiology, 2000, 35, 324-340.	1.2	169
157	Functional analysis of heterologous holin proteins in a λΔS genetic background. FEMS Microbiology Letters, 2000, 184, 179-186.	0.7	15
158	Gene Cloning and Expression and Secretion of Listeria monocytogenes Bacteriophage-Lytic Enzymes in Lactococcus lactis. Applied and Environmental Microbiology, 2000, 66, 2951-2958.	1.4	122
159	Long-Chain Polyphosphate Causes Cell Lysis and Inhibits <i>Bacillus cereus</i> Septum Formation, Which Is Dependent on Divalent Cations. Applied and Environmental Microbiology, 1999, 65, 3942-3949.	1.4	61
160	Evidence for a Holin-Like Protein Gene Fully Embedded Out of Frame in the Endolysin Gene of Staphylococcus aureus Bacteriophage 187. Journal of Bacteriology, 1999, 181, 4452-4460.	1.0	66
161	The two-component lysis system ofStaphylococcus aureusbacteriophage Twort: a large TTG-start holin and an associated amidase endolysin. FEMS Microbiology Letters, 1998, 162, 265-274.	0.7	90
162	Three Bacillus cereus bacteriophage endolysins are unrelated but reveal high homology to cell wall hydrolases from different bacilli. Journal of Bacteriology, 1997, 179, 2845-2851.	1.0	123

#	Article	IF	CITATIONS
163	Long-Chain Polyphosphates Inhibit Growth of Clostridium tyrobutyricum in Processed Cheese Spreads. Journal of Food Protection, 1997, 60, 493-498.	0.8	42
164	Evaluation of luciferase reporter bacteriophage A511::luxAB for detection of Listeria monocytogenes in contaminated foods. Applied and Environmental Microbiology, 1997, 63, 2961-2965.	1.4	118
165	Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology (United Kingdom), 1996, 142, 985-992.	0.7	119
166	WHO study on subtyping Listeria monocytogenes: results of phage-typing. International Journal of Food Microbiology, 1996, 32, 289-299.	2.1	34
167	Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. Applied and Environmental Microbiology, 1996, 62, 1133-1140.	1.4	181
168	Modified Listeria bacteriophage lysin genes (ply) allow efficient overexpression and one-step purification of biochemically active fusion proteins. Applied and Environmental Microbiology, 1996, 62, 3057-3060.	1.4	49
169	Organization and transcriptional analysis of the Listeria phage A511 late gene region comprising the major capsid and tail sheath protein genes cps and tsh. Journal of Bacteriology, 1995, 177, 6601-6609.	1.0	48
170	Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Molecular Microbiology, 1995, 16, 1231-1241.	1.2	171
171	Taxonomical Classification of 20 Newly Isolated <i>Listeria</i> Bacteriophages by Electron Microscopy and Protein Analysis. Intervirology, 1994, 37, 31-35.	1.2	19
172	Supplementary Listeria-typing with defective Listeria phage particles (monocins). Letters in Applied Microbiology, 1994, 19, 99-101.	1.0	13
173	Elimination of sample diffusion and lateral band spreading in isoelectric focusing employing ready-made immobilized pH gradient gels. Electrophoresis, 1992, 13, 461-463.	1.3	10
174	Classification of virulent and temperate bacteriophages of Listeria spp. on the basis of morphology and protein analysis. Applied and Environmental Microbiology, 1992, 58, 296-302.	1.4	85
175	The phagovar variability of Listeria strains under the influence of virulent and temperate bacteriophages. Letters in Applied Microbiology, 1991, 12, 192-195.	1.0	9
176	Comparative inducibility of bacteriophage in naturally lysogenic and lysogenized strains of Listeria spp. by u.v. light and Mitomycin C. Letters in Applied Microbiology, 1991, 12, 196-199.	1.0	20
177	Improved procedure for bacteriophage typing of Listeria strains and evaluation of new phages. Applied and Environmental Microbiology, 1991, 57, 882-884.	1.4	84
178	Bacteriophage typing of Listeria species. Applied and Environmental Microbiology, 1990, 56, 1912-1918.	1.4	158
179	Listeria Phages: Basics and Applications. , 0, , 362-379.		10