
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6301303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature Biotechnology, 2017, 35, 725-731.	17.5	1,512
2	Uncovering Earth's virome. Nature, 2016, 536, 425-430.	27.8	880
3	IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Research, 2019, 47, D666-D677.	14.5	799
4	CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nature Biotechnology, 2021, 39, 578-585.	17.5	569
5	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	17.5	457
6	Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nature Biotechnology, 2018, 36, 359-367.	17.5	414
7	Minimum Information about an Uncultivated Virus Genome (MIUViG). Nature Biotechnology, 2019, 37, 29-37.	17.5	414
8	The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Research, 2021, 49, D751-D763.	14.5	332
9	IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Research, 2021, 49, D764-D775.	14.5	240
10	Benchmarking viromics: an <i>in silico</i> evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ, 2017, 5, e3817.	2.0	235
11	1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nature Biotechnology, 2017, 35, 676-683.	17.5	222
12	Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nature Microbiology, 2016, 1, 15032.	13.3	207
13	Giant virus diversity and host interactions through global metagenomics. Nature, 2020, 578, 432-436.	27.8	207
14	Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth's biomes. Nature Microbiology, 2019, 4, 1895-1906.	13.3	206
15	Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nature Communications, 2016, 7, 10476.	12.8	189
16	The Human Microbiome: From Symbiosis to Pathogenesis. Annual Review of Medicine, 2013, 64, 145-163.	12.2	175
17	IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Research, 2019, 47, D678-D686.	14.5	174
18	Unexpected host dependency of Antarctic Nanohaloarchaeota. Proceedings of the National Academy of Sciences of the United States of America. 2019, 116, 14661-14670.	7.1	134

#	Article	IF	CITATIONS
19	Functional Dynamics of the Gut Microbiome in Elderly People during Probiotic Consumption. MBio, 2015, 6, .	4.1	126
20	Aerosol Mycobacterium tuberculosis Infection Causes Rapid Loss of Diversity in Gut Microbiota. PLoS ONE, 2014, 9, e97048.	2.5	124
21	Spatial, Temporal, and Phylogenetic Scales of Microbial Ecology. Trends in Microbiology, 2019, 27, 662-669.	7.7	105
22	Towards a balanced view of the bacterial tree of life. Microbiome, 2017, 5, 140.	11.1	102
23	Metabolic versatility of small archaea Micrarchaeota and Parvarchaeota. ISME Journal, 2018, 12, 756-775.	9.8	91
24	Impact of Oral Typhoid Vaccination on the Human Gut Microbiota and Correlations with S. Typhi-Specific Immunological Responses. PLoS ONE, 2013, 8, e62026.	2.5	82
25	Expansion of <i>Thaumarchaeota</i> habitat range is correlated with horizontal transfer of ATPase operons. ISME Journal, 2019, 13, 3067-3079.	9.8	59
26	COVID-19 pandemic reveals the peril of ignoring metadata standards. Scientific Data, 2020, 7, 188.	5.3	56
27	DOE JGI Metagenome Workflow. MSystems, 2021, 6, .	3.8	56
28	Diversity, evolution, and classification of virophages uncovered through global metagenomics. Microbiome, 2019, 7, 157.	11.1	53
29	Microbes and Climate Change: a Research Prospectus for the Future. MBio, 2022, 13, e0080022.	4.1	53
30	Differential Response of the Cynomolgus Macaque Gut Microbiota to Shigella Infection. PLoS ONE, 2013, 8, e64212.	2.5	52
31	Triplicate PCR reactions for 16S rRNA gene amplicon sequencing are unnecessary. BioTechniques, 2019, 67, 29-32.	1.8	48
32	Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils. PeerJ, 2019, 7, e7265.	2.0	48
33	Microbiome Data Science: Understanding Our Microbial Planet. Trends in Microbiology, 2016, 24, 425-427.	7.7	47
34	Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME Journal, 2020, 14, 2527-2541.	9.8	42
35	Ecological and genomic analyses of candidate phylum <scp>WPS</scp> â€⊉ bacteria in an unvegetated soil. Environmental Microbiology, 2020, 22, 3143-3157.	3.8	42
36	The National Microbiome Data Collaborative: enabling microbiome science. Nature Reviews Microbiology, 2020, 18, 313-314.	28.6	42

#	Article	IF	CITATIONS
37	Functional Signatures of the Epiphytic Prokaryotic Microbiome of Agaves and Cacti. Frontiers in Microbiology, 2019, 10, 3044.	3.5	41
38	Metagenomic insights into diazotrophic communities across Arctic glacier forefields. FEMS Microbiology Ecology, 2018, 94, .	2.7	36
39	Microbial metagenomes and metatranscriptomes during a coastal phytoplankton bloom. Scientific Data, 2019, 6, 129.	5.3	36
40	Ecology and molecular targets of hypermutation in the global microbiome. Nature Communications, 2021, 12, 3076.	12.8	35
41	Terabase-scale metagenome coassembly with MetaHipMer. Scientific Reports, 2020, 10, 10689.	3.3	34
42	Genomic variation and biogeography of Antarctic haloarchaea. Microbiome, 2018, 6, 113.	11.1	32
43	Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community. Microbiome, 2020, 8, 116.	11.1	32
44	Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the subseafloor crustal biosphere. ISME Journal, 2019, 13, 1457-1468.	9.8	31
45	The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nature Communications, 2021, 12, 5483.	12.8	29
46	Microbiome Metadata Standards: Report of the National Microbiome Data Collaborative's Workshop and Follow-On Activities. MSystems, 2021, 6, .	3.8	28
47	Optimizing <i>de novo</i> genome assembly from PCR-amplified metagenomes. PeerJ, 2019, 7, e6902.	2.0	28
48	Contrasting Pathways for Anaerobic Methane Oxidation in Gulf of Mexico Cold Seep Sediments. MSystems, 2019, 4, .	3.8	27
49	Diverse events have transferred genes for edible seaweed digestion from marine to human gut bacteria. Cell Host and Microbe, 2022, 30, 314-328.e11.	11.0	25
50	Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota. Nature Microbiology, 2022, 7, 556-569.	13.3	21
51	Shotgun metagenomic analysis of microbial communities from the Loxahatchee nature preserve in the Florida Everglades. Environmental Microbiomes, 2020, 15, 2.	5.0	20
52	Metagenome-assembled genomes of phytoplankton microbiomes from the Arctic and Atlantic Oceans. Microbiome, 2022, 10, 67.	11.1	17
53	Host population diversity as a driver of viral infection cycle in wild populations of green sulfur bacteria with long standing virus-host interactions. ISME Journal, 2021, 15, 1569-1584.	9.8	16
54	Ecotype Diversity and Conversion in Photobacterium profundum Strains. PLoS ONE, 2014, 9, e96953.	2.5	15

#	Article	IF	CITATIONS
55	Metagenome Sequencing to Explore Phylogenomics of Terrestrial Cyanobacteria. Microbiology Resource Announcements, 2021, 10, e0025821.	0.6	15
56	Dissecting the dominant hot spring microbial populations based on community-wide sampling at single-cell genomic resolution. ISME Journal, 2022, 16, 1337-1347.	9.8	15
57	Advancing Genome-Resolved Metagenomics beyond the Shotgun. MSystems, 2019, 4, .	3.8	14
58	Genomic Characterization of Candidate Division LCP-89 Reveals an Atypical Cell Wall Structure, Microcompartment Production, and Dual Respiratory and Fermentative Capacities. Applied and Environmental Microbiology, 2019, 85, .	3.1	14
59	Impact of Soil Salinity on the Cowpea Nodule-Microbiome and the Isolation of Halotolerant PGPR Strains to Promote Plant Growth under Salinity Stress. Phytobiomes Journal, 2020, 4, 364-374.	2.7	14
60	The role of zinc in the adaptive evolution of polar phytoplankton. Nature Ecology and Evolution, 2022, 6, 965-978.	7.8	14
61	Position-Specific Metabolic Probing and Metagenomics of Microbial Communities Reveal Conserved Central Carbon Metabolic Network Activities at High Temperatures. Frontiers in Microbiology, 2019, 10, 1427.	3.5	12
62	In-depth Spatiotemporal Characterization of Planktonic Archaeal and Bacterial Communities in North and South San Francisco Bay. Microbial Ecology, 2021, 81, 601-616.	2.8	11
63	Microbiomes of Velloziaceae from phosphorus-impoverished soils of the campos rupestres, a biodiversity hotspot. Scientific Data, 2019, 6, 140.	5.3	10
64	Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of Thermoflexus hugenholtzii and Three Candidate Species From China and Japan. Frontiers in Microbiology, 2021, 12, 632731.	3.5	8
65	Towards a genome-based virus taxonomy. Nature Microbiology, 2019, 4, 1249-1250.	13.3	7
66	Diversity and Distribution of a Novel Genus of Hyperthermophilic Aquificae Viruses Encoding a Proof-Reading Family-A DNA Polymerase. Frontiers in Microbiology, 2020, 11, 583361.	3.5	7
67	Adaptations of Cold- and Pressure-Loving Bacteria to the Deep-Sea Environment: Cell Envelope and Flagella. , 2017, , 51-80.		6
68	Metagenomes and metatranscriptomes from boreal potential and actual acid sulfate soil materials. Scientific Data, 2019, 6, 207.	5.3	6
69	Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale. Frontiers in Bioinformatics, 2022, 1, .	2.1	6
70	Genomes From Uncultivated Microorganisms. , 2019, , .		4
71	Medicago root nodule microbiomes: insights into a complex ecosystem with potential candidates for plant growth promotion. Plant and Soil, 0, , 1.	3.7	4
72	Genome gazing in ammonia-oxidizing archaea. Nature Reviews Microbiology, 2019, 17, 531-531.	28.6	3

#	Article	IF	CITATIONS
73	Metagenomes and Metatranscriptomes of a Glucose-Amended Agricultural Soil. Microbiology Resource Announcements, 2020, 9, .	0.6	2
74	Metagenomes from Experimental Hydrologic Manipulation of Restored Coastal Plain Wetland Soils (Tyrell County, North Carolina). Microbiology Resource Announcements, 2020, 9, .	0.6	1
75	Metatranscriptomic Sequencing of a Cyanobacterial Soil-Surface Consortium with and without a Diverse Underlying Soil Microbiome. Microbiology Resource Announcements, 2020, 9, .	0.6	1