Yijun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6300849/publications.pdf

Version: 2024-02-01

YHUN WANC

#	Article	IF	CITATIONS
1	High-speed spelling with a noninvasive brain–computer interface. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6058-67.	3.3	671
2	A practical VEP-based brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14, 234-240.	2.7	562
3	Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis. IEEE Transactions on Biomedical Engineering, 2018, 65, 104-112.	2.5	493
4	Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface. Journal of Neural Engineering, 2015, 12, 046008.	1.8	481
5	Visual and Auditory Brain–Computer Interfaces. IEEE Transactions on Biomedical Engineering, 2014, 61, 1436-1447.	2.5	350
6	Brain-Computer Interfaces Based on Visual Evoked Potentials. IEEE Engineering in Medicine and Biology Magazine, 2008, 27, 64-71.	1.1	347
7	Dry and Noncontact EEG Sensors for Mobile Brain–Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 228-235.	2.7	288
8	A HIGH-SPEED BRAIN SPELLER USING STEADY-STATE VISUAL EVOKED POTENTIALS. International Journal of Neural Systems, 2014, 24, 1450019.	3.2	287
9	A Benchmark Dataset for SSVEP-Based Brain–Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1746-1752.	2.7	260
10	A high-speed BCI based on code modulation VEP. Journal of Neural Engineering, 2011, 8, 025015.	1.8	241
11	A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials. PLoS ONE, 2015, 10, e0140703.	1.1	241
12	VEP-based brain-computer interfaces: time, frequency, and code modulations [Research Frontier. IEEE Computational Intelligence Magazine, 2009, 4, 22-26.	3.4	225
13	Common Spatial Pattern Method for Channel Selelction in Motor Imagery Based Brain-computer Interface. , 2005, 2005, 5392-5.		198
14	A Brain–Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli. IEEE Transactions on Biomedical Engineering, 2018, 65, 1166-1175.	2.5	170
15	A cell-phone-based brain–computer interface for communication in daily life. Journal of Neural Engineering, 2011, 8, 025018.	1.8	140
16	A study of the existing problems of estimating the information transfer rate in online brain–computer interfaces. Journal of Neural Engineering, 2013, 10, 026014.	1.8	139
17	Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI. International Journal of Neural Systems, 2018, 28, 1850018.	3.2	123
18	BCI Competition 2003—Data Set IV: An Algorithm Based on CSSD and FDA for Classifying Single-Trial EEG. IEEE Transactions on Biomedical Engineering, 2004, 51, 1081-1086.	2.5	116

#	Article	IF	CITATIONS
19	A Collaborative Brain-Computer Interface for Improving Human Performance. PLoS ONE, 2011, 6, e20422.	1.1	111
20	Implementing Over 100 Command Codes for a High-Speed Hybrid Brain-Computer Interface Using Concurrent P300 and SSVEP Features. IEEE Transactions on Biomedical Engineering, 2020, 67, 3073-3082.	2.5	104
21	Enhancing performances of SSVEP-based brain–computer interfaces via exploiting inter-subject information. Journal of Neural Engineering, 2015, 12, 046006.	1.8	102
22	Enhance decoding of pre-movement EEG patterns for brain–computer interfaces. Journal of Neural Engineering, 2020, 17, 016033.	1.8	95
23	Interface, interaction, and intelligence in generalized brain–computer interfaces. Trends in Cognitive Sciences, 2021, 25, 671-684.	4.0	94
24	Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm. Journal of Neural Engineering, 2019, 16, 026012.	1.8	91
25	BETA: A Large Benchmark Database Toward SSVEP-BCI Application. Frontiers in Neuroscience, 2020, 14, 627.	1.4	86
26	Amplitude and phase coupling measures for feature extraction in an EEG-based brain–computer interface. Journal of Neural Engineering, 2007, 4, 120-129.	1.8	81
27	Generating Visual Flickers for Eliciting Robust Steady-State Visual Evoked Potentials at Flexible Frequencies Using Monitor Refresh Rate. PLoS ONE, 2014, 9, e99235.	1.1	81
28	A High-Speed SSVEP-Based BCI Using Dry EEG Electrodes. Scientific Reports, 2018, 8, 14708.	1.6	79
29	Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss. JAMA Ophthalmology, 2017, 135, 550.	1.4	78
30	Discriminative Canonical Pattern Matching for Single-Trial Classification of ERP Components. IEEE Transactions on Biomedical Engineering, 2020, 67, 2266-2275.	2.5	77
31	Improving the Performance of Individually Calibrated SSVEP-BCI by Task- Discriminant Component Analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1998-2007.	2.7	67
32	Phase Synchrony Measurement in Motor Cortex for Classifying Single-trial EEG during Motor Imagery. , 2006, 2006, 75-8.		58
33	An online hybrid BCI system based on SSVEP and EMG. Journal of Neural Engineering, 2016, 13, 026020.	1.8	58
34	Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 3140-3147.	2.7	58
35	An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 14-21.	2.7	55
36	Implementing a calibration-free SSVEP-based BCI system with 160 targets. Journal of Neural Engineering, 2021, 18, .	1.8	50

#	Article	IF	CITATIONS
37	A Dynamic Window Recognition Algorithm for SSVEP-Based Brain–Computer Interfaces Using a Spatio-Temporal Equalizer. International Journal of Neural Systems, 2018, 28, 1850028.	3.2	47
38	A novel training-free recognition method for SSVEP-based BCIs using dynamic window strategy. Journal of Neural Engineering, 2021, 18, 036007.	1.8	47
39	Translation of EEG Spatial Filters from Resting to Motor Imagery Using Independent Component Analysis. PLoS ONE, 2012, 7, e37665.	1.1	46
40	Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 119.	2.4	44
41	Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller. , 2014, 2014, 3993-6.		43
42	Implementation of a Brain-Computer Interface Based on Three States of Motor Imagery. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 5059-62.	0.5	42
43	Lead selection for SSVEP-based brain-computer interface. , 2004, 2004, 4507-10.		38
44	A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1178-1187.	2.7	37
45	Polychromatic SSVEP stimuli with subtle flickering adapted to brain-display interactions. Journal of Neural Engineering, 2017, 14, 016018.	1.8	36
46	A Training Data-Driven Canonical Correlation Analysis Algorithm for Designing Spatial Filters to Enhance Performance of SSVEP-Based BCIs. International Journal of Neural Systems, 2020, 30, 2050020.	3.2	36
47	A Practical Mobile Dry EEG System for Human Computer Interfaces. Lecture Notes in Computer Science, 2013, , 649-655.	1.0	35
48	Assessing the quality of steady-state visual-evoked potentials for moving humans using a mobile electroencephalogram headset. Frontiers in Human Neuroscience, 2014, 8, 182.	1.0	35
49	Decoding EEG in Cognitive Tasks With Time-Frequency and Connectivity Masks. IEEE Transactions on Cognitive and Developmental Systems, 2016, 8, 298-308.	2.6	31
50	An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces. Sensors, 2021, 21, 1256.	2.1	28
51	A study on dynamic model of steady-state visual evoked potentials. Journal of Neural Engineering, 2018, 15, 046010.	1.8	26
52	EEG-Based Brain-Computer Interfaces. Advances in Experimental Medicine and Biology, 2019, 1101, 41-65.	0.8	26
53	Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs. Journal of Neural Engineering, 2021, 18, 056046.	1.8	22
54	Align and Pool for EEG Headset Domain Adaptation (ALPHA) to Facilitate Dry Electrode Based SSVEP-BCI. IEEE Transactions on Biomedical Engineering, 2022, 69, 795-806.	2.5	22

#	Article	IF	CITATIONS
55	Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor. Journal of Neural Engineering, 2019, 16, 066007.	1.8	21
56	Optimizing a dual-frequency and phase modulation method for SSVEP-based BCIs. Journal of Neural Engineering, 2020, 17, 046026.	1.8	19
57	Session-to-Session Transfer in Detecting Steady-State Visual Evoked Potentials with Individual Training Data. Lecture Notes in Computer Science, 2016, , 253-260.	1.0	18
58	Individual Identification Based on Code-Modulated Visual-Evoked Potentials. IEEE Transactions on Information Forensics and Security, 2019, 14, 3206-3216.	4.5	18
59	Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features. Journal of Neural Engineering, 2016, 13, 066003.	1.8	17
60	Detection of steady-state visual-evoked potential using differential canonical correlation analysis. , 2013, , .		15
61	Simultaneous Decoding of Eccentricity and Direction Information for a Single-Flicker SSVEP BCI. Electronics (Switzerland), 2019, 8, 1554.	1.8	15
62	An online brain-computer interface in mobile virtual reality environments. Integrated Computer-Aided Engineering, 2019, 26, 345-360.	2.5	14
63	A Benchmark Dataset for RSVP-Based Brain–Computer Interfaces. Frontiers in Neuroscience, 2020, 14, 568000.	1.4	14
64	Online Voluntary Eye Blink Detection using Electrooculogram. IEICE Proceeding Series, 2014, 1, 114-117.	0.0	14
65	A Pre-Gelled EEG Electrode and Its Application in SSVEP-Based BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 843-850.	2.7	14
66	Towards online applications of EEG biometrics using visual evoked potentials. Expert Systems With Applications, 2021, 177, 114961.	4.4	13
67	Maximum Signal Fraction Analysis for Enhancing Signal-to-Noise Ratio of EEG Signals in SSVEP-Based BCIs. IEEE Access, 2019, 7, 85452-85461.	2.6	11
68	Spatio-temporal equalization multi-window algorithm for asynchronous SSVEP-based BCI. Journal of Neural Engineering, 2021, 18, 0460b7.	1.8	11
69	BWGAN-GP: An EEG Data Generation Method for Class Imbalance Problem in RSVP Tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 251-263.	2.7	11
70	A dynamic stopping method for improving performance of steady-state visual evoked potential based brain-computer interfaces. , 2015, 2015, 1057-60.		10
71	Resting-State-Based Spatial Filtering for an fNIRS-Based Motor Imagery Brain-Computer Interface. IEEE Access, 2019, 7, 120603-120615.	2.6	10
72	A Brain-Computer Interface Based on Multi-Modal Attention. , 2007, , .		9

YIJUN WANG IF ARTICLE CITATIONS A Spatially-Coded Visual Brain-Computer Interface for Flexible Visual Spatial Information Decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 926-933. Cell-phone based Drowsiness Monitoring and Management system., 2012,,. 8 A brain-computer interface based on high-frequency steady-state asymmetric visual evoked potentials. , 2020, 2020, 3090-3093. Validation of a brain-computer interface version of the digit symbol substitution test in healthy 3.9 8 subjects. Computers in Biology and Medicine, 2020, 120, 103729. Multi-objective optimization approach for channel selection and cross-subject generalization in 1.8 RSVP-based BCIs. Journal of Neural Engineering, 2021, 18, 046076. A 120-target brain-computer interface based on code-modulated visual evoked potentials. Journal of 1.3 8 Neuroscience Methods, 2022, 375, 109597. eldBETA: A Large Eldercare-oriented Benchmark Database of SSVEP-BCI for the Aging Population. 2.4 Scientific Data, 2022, 9, . A high-performance brain switch based on code-modulated visual evoked potentials. Journal of Neural 1.8 7 Engineering, 2022, 19, 016002. A High-Resolution Dry Electrode Array for SSVEP-Based Brain-Computer Interfaces., 2019, , . Estimation of Optimal Location of EEG Reference Electrode for Motor Imagery Based BCI Using fMRI. 0.5 6 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , . A Dry Electrode Cap and Its Application in a Steady-State Visual Evoked Potential-Based 1.8 Brain–Computer Interface. Electronics (Switzerland), 2019, 8, 1080. A Hybrid Brain-Computer Interface Based on Visual Evoked Potential and Pupillary Response. Frontiers 1.0 5 in Human Neuroscience, 2022, 16, 834959. Multisymbol Time Division Coding for High-Frequency Steady-State Visual Evoked Potential-Based Brain-Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 2.7 30, 1693-1704. Developing a one-channel BCI system using a dry claw-like electrode., 2016, 2016, 5693-5696. 4 Does frequency resolution affect the classification performance of steady-state visual evoked potentials?., 2017,,. Detection of fixation points using a small visual landmark for brainâ€" computer interfaces. Journal of 1.8 4 Neural Engineering, 2021, 18, 046098.

89	Modulation of brain states on fractal and oscillatory power of EEG in brain–computer interfaces. Journal of Neural Engineering, 2021, 18, 056047.	1.8	4	
	14.4: Polychromatic Highâ€Frequency Steadyâ€State Visual Evoked Potentials for Brainâ€Display Interaction.			

90 14.4: Polychromatic Highâ€Frequency Steadyâ€State Visual Evoked Potentials for Brainâ€Display Interaction.
0.1 3
Digest of Technical Papers SID International Symposium, 2013, 44, 146-149.

#

74

76

78

79

80

82

84

86

88

#	Article	IF	CITATIONS
91	Optimizing Spatial Contrast of a New Checkerboard Stimulus for Eliciting Robust SSVEPs. , 2019, , .		3
92	A Fast Brain Switch Based on Multi-Class Code-Modulated VEPs. , 2019, 2019, 3058-3061.		3
93	Towards a fully spatially coded brain-computer interface: simultaneous decoding of visual eccentricity and direction. , 2019, 2019, 3091-3094.		3
94	Visual field inhomogeneous in brain–computer interfaces based on rapid serial visual presentation. Journal of Neural Engineering, 2022, 19, 016015.	1.8	3
95	Optimizing a left and right visual field biphasic stimulation paradigm for SSVEP-based BCIs with hairless region behind the ear. Journal of Neural Engineering, 2021, 18, 066040.	1.8	3
96	11.1: <i>Invited Paper</i> : Brainâ€Display Interaction and Its Biomedical Application Using Steadyâ€State Visual Evoked Potentials. Digest of Technical Papers SID International Symposium, 2015, 46, 122-125.	0.1	1
97	tACS facilitates flickering driving by boosting steady-state visual evoked potentials. Journal of Neural Engineering, 2021, 18, 066042.	1.8	1
98	Facilitating Applications of SSVEP-Based BCIs by Within-Subject Information Transfer. Frontiers in Neuroscience, 2022, 16, .	1.4	1
99	Study of visual stimulus waveforms via forced van der Pol oscillator model for SSVEP-based brain-computer interfaces. , 2013, , .		0