Qingjie Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6300797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The recent advances for an archetypal smooth and discontinuous oscillator. International Journal of Mechanical Sciences, 2022, 214, 106904.	3.6	23
2	Modeling and analysis of a novel multi-directional micro-vibration isolator with spring suspension struts. Archive of Applied Mechanics, 2022, 92, 801-819.	1.2	9
3	An Archetypal Vibration Isolator with Quasi-zero Stiffness in Multiple Directions. Journal of Nonlinear Mathematical Physics, 2022, 29, 190-203.	0.8	3
4	Dynamic Analysis of a Loading-Adapting Quasi-Zero-Stiffness Isolation System Based on the Rolling Lobe Air-Springs. Journal of Vibration Engineering and Technologies, 2022, 10, 3207-3225.	1.3	5
5	A multi-directional multi-stable device: Modeling, experiment verification and applications. Mechanical Systems and Signal Processing, 2021, 146, 106986.	4.4	52
6	Dynamic characteristics analysis for a quasi-zero-stiffness system coupled with mechanical disturbance. Archive of Applied Mechanics, 2021, 91, 1449-1467.	1.2	5
7	A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mechanical Systems and Signal Processing, 2021, 155, 107636.	4.4	82
8	Bursting oscillations in an isolation system with quasi-zero stiffness. Mechanical Systems and Signal Processing, 2021, 161, 107916.	4.4	31
9	A two degree of freedom stable quasi-zero stiffness prototype and its applications in aseismic engineering. Science China Technological Sciences, 2020, 63, 496-505.	2.0	42
10	Dynamics and high-efficiency of a novel multi-stable energy harvesting system. Chaos, Solitons and Fractals, 2020, 131, 109516.	2.5	29
11	Stick-slip vibrations of a self-excited SD oscillator with Coulomb friction. Nonlinear Dynamics, 2020, 102, 1419-1435.	2.7	18
12	Noise-Âand delay-enhanced stability in a nonlinear isolation system. International Journal of Non-Linear Mechanics, 2019, 110, 81-93.	1.4	15
13	Dynamics and energy generation of a hybrid energy harvester under colored noise excitations. Mechanical Systems and Signal Processing, 2019, 121, 745-766.	4.4	41
14	Time delay improves beneficial performance of a novel hybrid energy harvester. Nonlinear Dynamics, 2019, 96, 1511-1530.	2.7	22
15	Dynamics and performance evaluation of a novel tristable hybrid energy harvester for ultra-low level vibration resources. International Journal of Mechanical Sciences, 2019, 156, 123-136.	3.6	75
16	Novel multi-stable energy harvester by exploring the benefits of geometric nonlinearity. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 033405.	0.9	29
17	Free vibration of truncated conical shells with elastic boundary constraints and added mass. International Journal of Mechanical Sciences, 2019, 155, 286-294.	3.6	17
18	Noise-induced phenomena in a versatile class of prototype dynamical system with time delay. Nonlinear Dynamics, 2018, 92, 511-529.	2.7	19

QINGJIE CAO

#	Article	IF	CITATIONS
19	Parametric instability analysis of truncated conical shells using the Haar wavelet method. Mechanical Systems and Signal Processing, 2018, 105, 200-213.	4.4	22
20	Frequency analysis of rotating truncated conical shells using the Haar wavelet method. Applied Mathematical Modelling, 2018, 57, 603-613.	2.2	48
21	Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities. Mechanical Systems and Signal Processing, 2018, 103, 216-235.	4.4	57
22	Response analysis of the archetypal smooth and discontinuous oscillator for vibration energy harvesting. Physica A: Statistical Mechanics and Its Applications, 2018, 507, 358-373.	1.2	34
23	Parametric instability of rotating cylindrical shells subjected to periodic axial loads. International Journal of Mechanical Sciences, 2018, 146-147, 1-8.	3.6	22
24	Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 043202.	0.9	18
25	The complicated bifurcation of an archetypal self-excited SD oscillator with dry friction. Nonlinear Dynamics, 2017, 89, 91-106.	2.7	16
26	A parametrically excited pendulum with irrational nonlinearity. International Journal of Non-Linear Mechanics, 2017, 88, 122-134.	1.4	12
27	Rotating pendulum with smooth and discontinuous dynamics. International Journal of Mechanical Sciences, 2017, 127, 91-102.	3.6	12
28	Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dynamics, 2017, 87, 987-1014.	2.7	98
29	Multiple Bifurcations of a Cylindrical Dynamical System. Journal of Theoretical and Applied Mechanics (Bulgaria), 2016, 46, 33-52.	0.6	2
30	Two-sided damping constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dynamics, 2016, 86, 2129-2144.	2.7	58
31	Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices. Applied Mathematics and Mechanics (English Edition), 2016, 37, 1251-1274.	1.9	29
32	Bifurcation analysis for vibrations of a turbine blade excited by air flows. Science China Technological Sciences, 2016, 59, 1217-1231.	2.0	19
33	A three-degree-of-freedom model for vortex-induced vibrations of turbine blades. Meccanica, 2016, 51, 2607-2628.	1.2	15
34	Global bifurcations of a rotating pendulum with irrational nonlinearity. Communications in Nonlinear Science and Numerical Simulation, 2016, 36, 431-445.	1.7	20
35	Free vibration analysis of truncated circular conical shells with variable thickness using the Haar wavelet method. Journal of Vibroengineering, 2016, 18, 5291-5305.	0.5	8
36	Nonlinear Dynamics of a Smooth and Discontinuous Oscillator with Multiple Stability. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1530038.	0.7	26

QINGJIE CAO

#	Article	IF	CITATIONS
37	Chaotic thresholds for the piecewise linear discontinuous system with multiple well potentials. International Journal of Non-Linear Mechanics, 2015, 70, 145-152.	1.4	26
38	A rotating disk linked by a pair of springs. Nonlinear Dynamics, 2015, 79, 1275-1291.	2.7	9
39	The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. Journal of Sound and Vibration, 2015, 340, 61-79.	2.1	132
40	Bifurcations and hysteresis of varying compliance vibrations in the primary parametric resonance for a ball bearing. Journal of Sound and Vibration, 2015, 350, 171-184.	2.1	76
41	Approximations of Parabolic Equations at the Vicinity of Hyperbolic Equilibrium Point. Numerical Functional Analysis and Optimization, 2014, 35, 1287-1307.	0.6	7
42	Wada basin dynamics of a shallow arch oscillator with more than 20 coexisting low-period periodic attractors. International Journal of Non-Linear Mechanics, 2014, 58, 151-161.	1.4	18
43	A novel model of dipteran flight mechanism. International Journal of Dynamics and Control, 2013, 1, 1-11.	1.5	35
44	A fully nonlinear oscillator with contact and friction. Nonlinear Dynamics, 2012, 70, 511-522.	2.7	13
45	A novel smooth and discontinuous oscillator with strong irrational nonlinearities. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1832-1843.	2.0	41
46	Research on dynamics and fault mechanism of spur gear pair with spalling defect. Journal of Sound and Vibration, 2012, 331, 2097-2109.	2.1	89
47	The codimension-two bifurcation for the recent proposed SDÂoscillator. Nonlinear Dynamics, 2010, 59, 19-27.	2.7	94
48	The limit case response of the archetypal oscillator for smooth and discontinuous dynamics. International Journal of Non-Linear Mechanics, 2008, 43, 462-473.	1.4	93
49	Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 635-652.	1.6	121
50	Archetypal oscillator for smooth and discontinuous dynamics. Physical Review E, 2006, 74, 046218.	0.8	205
51	Dynamic Analysis of a Multiple-Span Euler–Bernoulli Beam Supported by Pneumatic Quasi-zero-stiffness System. Journal of Vibration Engineering and Technologies, 0, , 1.	1.3	0