Ariel Roldan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6300019/publications.pdf

Version: 2024-02-01

25 papers 1,502 citations

567281 15 h-index 23 g-index

25 all docs

25 docs citations

25 times ranked

1585 citing authors

#	Article	IF	CITATIONS
1	Endofin is required for HD-PTP and ESCRT-0 interdependent endosomal sorting of ubiquitinated transmembrane cargoes. IScience, 2021, 24, 103274.	4.1	7
2	Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination. JCI Insight, 2020, 5, .	5.0	159
3	Differential Scanning Fluorimetry and Hydrogen Deuterium Exchange Mass Spectrometry to Monitor the Conformational Dynamics of NBD1 in Cystic Fibrosis. Methods in Molecular Biology, 2019, 1873, 53-67.	0.9	8
4	\hat{l} F508-CFTR Modulator Screen Based on Cell Surface Targeting of a Chimeric Nucleotide Binding Domain 1 Reporter. SLAS Discovery, 2018, 23, 823-831.	2.7	5
5	Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nature Medicine, 2018, 24, 1732-1742.	30.7	117
6	Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell. Nature Communications, 2017, 8, 398.	12.8	57
7	New insights into interactions between the nucleotideâ€binding domain of CFTR and keratin 8. Protein Science, 2017, 26, 343-354.	7.6	10
8	Development and characterization of synthetic antibodies binding to the cystic fibrosis conductance regulator. MAbs, 2016, 8, 1167-1176.	5.2	3
9	Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects â^† F508CFTR Dysfunction: Impact in Cystic Fibrosis. Journal of Molecular Biology, 2016, 428, 2898-2915.	4.2	22
10	Non-native Conformers of Cystic Fibrosis Transmembrane Conductance Regulator NBD1 Are Recognized by Hsp27 and Conjugated to SUMO-2 for Degradation. Journal of Biological Chemistry, 2016, 291, 2004-2017.	3.4	28
11	Interplay of Endosomal pH and Ligand Occupancy in Integrin α5β1ÂUbiquitination, Endocytic Sorting, and Cell Migration. Cell Reports, 2015, 13, 599-609.	6.4	48
12	Synergy-Based Small-Molecule Screen Using a Human Lung Epithelial Cell Line Yields ΔF508-CFTR Correctors That Augment VX-809 Maximal Efficacy. Molecular Pharmacology, 2014, 86, 42-51.	2.3	58
13	Discovery of novel potent <scp>ΔF</scp> 508― <scp>CFTR</scp> correctors that target the nucleotide binding domain. EMBO Molecular Medicine, 2013, 5, 1484-1501.	6.9	77
14	Mechanism-based corrector combination restores î"F508-CFTR folding and function. Nature Chemical Biology, 2013, 9, 444-454.	8.0	361
15	Correction of Both NBD1 Energetics and Domain Interface Is Required to Restore ΔF508 CFTR Folding and Function. Cell, 2012, 148, 150-163.	28.9	263
16	Structural changes in the SL5 and SL6 leader sequences of HIV-1 RNA following interactions with the viral mGag protein. Virus Research, 2011, 155, 98-105.	2.2	0
17	The R362A mutation at the C-terminus of CA inhibits packaging of human immunodeficiency virus type 1 RNA. Virology, 2005, 343, 190-200.	2.4	10
18	A HIV-1 Minimal Gag Protein Is Superior to Nucleocapsid at in Vitro tRNA3Lys Annealing and Exhibits Multimerization-induced Inhibition of Reverse Transcription. Journal of Biological Chemistry, 2005, 280, 17488-17496.	3.4	25

#	Article	IF	CITATION
19	Mutation of the SP1 Sequence Impairs both Multimerization and Membrane-Binding Activities of Human Immunodeficiency Virus Type 1 Gag. Journal of Virology, 2005, 79, 1803-1812.	3.4	51
20	Variability in the PR and RT Genes of HIV-1 Isolated from Recently Infected Subjects. Antiviral Chemistry and Chemotherapy, 2004, 15, 255-259.	0.6	8
21	In Vitro Identification and Characterization of an Early Complex Linking HIV-1 Genomic RNA Recognition and Pr55Gag Multimerization. Journal of Biological Chemistry, 2004, 279, 39886-39894.	3.4	28
22	Hb Johnstown [β109(G11)Val→Leu]: a High Oxygen Affinity Variant Associated with β0â€Thalassemia. Hemoglobin, 2004, 28, 335-338.	0.8	8
23	Effects of a Single Amino Acid Substitution within thep2 Region of Human Immunodeficiency Virus Type 1 on Packagingof Spliced ViralRNA. Journal of Virology, 2003, 77, 12986-12995.	3.4	37
24	Characterization of a Putative \hat{l} ±-Helix across the Capsid-SP1 Boundary That Is Critical for the Multimerization of Human Immunodeficiency Virus Type 1 Gag. Journal of Virology, 2002, 76, 11729-11737.	3.4	102
25	Molecular characterization of \hat{l}^2 -thalassemia genes in an Argentine population. , 1997, 54, 179-182.		10