Rosa Faner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6299749/publications.pdf

Version: 2024-02-01

168829 124990 4,611 102 31 64 citations h-index g-index papers

105 105 105 7136 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Treatment Trials in Young Patients with Chronic Obstructive Pulmonary Disease and Pre–Chronic Obstructive Pulmonary Disease Patients: Time to Move Forward. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 275-287.	2.5	72
2	ERS statement: a core outcome set for clinical trials evaluating the management of COPD exacerbations. European Respiratory Journal, 2022, 59, 2102006.	3.1	34
3	Changes in lung function in European adults born between 1884 and 1996 and implications for the diagnosis of lung disease: a cross-sectional analysis of ten population-based studies. Lancet Respiratory Medicine,the, 2022, 10, 83-94.	5.2	19
4	Lung aging and senescence in health and disease. , 2022, , 61-80.		1
5	Add-on inhaled budesonide in the treatment of hospitalised patients with COVID-19: a randomised clinical trial. European Respiratory Journal, 2022, 59, 2103036.	3.1	9
6	Predicting Early Hospital Readmissions in COPD Patients Using an Electronic Nose. Archivos De Bronconeumologia, 2022, 58, 663-665.	0.4	1
7	SARS-CoV-2 T-cell response in COVID-19 convalescent patients with and without lung sequelae. ERJ Open Research, 2022, 8, 00706-2021.	1.1	1
8	Elevated plasma levels of epithelial and endothelial cell markers in COVID-19 survivors with reduced lung diffusing capacity six months after hospital discharge. Respiratory Research, 2022, 23, 37.	1.4	23
9	<scp>CT</scp> in <scp>COPD</scp> : To be or not to be. Respirology, 2022, 27, 258-259.	1.3	4
10	Más alla del binomio EPOC-tabaco: nuevas oportunidades para la prevención y tratamiento precoz de la enfermedad. Medicina ClÃnica, 2022, 159, 33-39.	0.3	3
11	Pathogenesis of chronic obstructive pulmonary disease: understanding the contributions of gene–environment interactions across the lifespan. Lancet Respiratory Medicine,the, 2022, 10, 512-524.	5.2	93
12	Beyond the COPD-tobacco binomium: New opportunities for the prevention and early treatment of the disease. Medicina ClÃnica (English Edition), 2022, 159, 33-39.	0.1	0
13	Lung DNA Methylation in Chronic Obstructive Pulmonary Disease: Relationship with Smoking Status and Airflow Limitation Severity. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 129-134.	2.5	13
14	Liver epigenome changes in patients with hepatopulmonary syndrome: A pilot study. PLoS ONE, 2021, 16, e0245046.	1.1	4
15	Low birth weight as a potential risk factor for severe COVID-19 in adults. Scientific Reports, 2021, 11 , 2909.	1.6	10
16	Transitioning from infancy to adulthood: a black box full of opportunities. European Respiratory Journal, 2021, 57, 2003997.	3.1	3
17	Early treatment with inhaled budesonide to prevent clinical deterioration in patients with COVID-19. Lancet Respiratory Medicine,the, 2021, 9, 682-683.	5.2	12
18	Lung Function sequelae in COVID-19 Patients 3 Months After Hospital Discharge. Archivos De Bronconeumologia, 2021, 57, 59-61.	0.4	36

#	Article	IF	CITATIONS
19	Single cell RNA sequencing identifies IGFBP5 and QKI as ciliated epithelial cell genes associated with severe COPD. Respiratory Research, 2021, 22, 100.	1.4	18
20	Risk Factors and Relation with Mortality of a New Acquisition and Persistence of Pseudomonas aeruginosa in COPD Patients. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2021, 18, 333-340.	0.7	14
21	Molecular Interactions of SARS-CoV-2 in Lung Tissue of Patients with Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2021, 18, 1922-1924.	1.5	2
22	Chronic bronchial infection and incident cardiovascular events in chronic obstructive pulmonary disease patients: A longâ€term observational study. Respirology, 2021, 26, 776-785.	1.3	10
23	Cellular Senescence in Lung Fibrosis. International Journal of Molecular Sciences, 2021, 22, 7012.	1.8	33
24	Lung function trajectory and biomarkers in the Tasmanian Longitudinal Health Study. ERJ Open Research, 2021, 7, 00020-2021.	1.1	11
25	Spirometry: A practical lifespan predictor of global health and chronic respiratory and non-respiratory diseases. European Journal of Internal Medicine, 2021, 89, 3-9.	1.0	19
26	Spirometric phenotypes from early childhood to young adulthood: a Chronic Airway Disease Early Stratification study. ERJ Open Research, 2021, 7, 00457-2021.	1.1	13
27	3TR: a pan-European cross-disease research consortium aimed at improving personalised biological treatment of asthma and COPD. European Respiratory Journal, 2021, 58, 2102168.	3.1	8
28	Telomere Length but Not Mitochondrial DNA Copy Number Is Altered in Both Young and Old COPD. Frontiers in Medicine, 2021, 8, 761767.	1.2	5
29	When Harry Met Sally, or When Machine Learning Met Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 263-265.	2.5	4
30	Chronic Obstructive Pulmonary Disease Pathogenesis. Clinics in Chest Medicine, 2020, 41, 307-314.	0.8	6
31	Phenotypic characterisation of early COPD: a prospective case–control study. ERJ Open Research, 2020, 6, 00047-2020.	1.1	21
32	COPD 2020: changes and challenges. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L879-L883.	1.3	66
33	Time for a change: anticipating the diagnosis and treatment of COPD. European Respiratory Journal, 2020, 56, 2002104.	3.1	33
34	Inhaled Steroids, Circulating Eosinophils, Chronic Airway Infection, and Pneumonia Risk in Chronic Obstructive Pulmonary Disease. A Network Analysis. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1078-1085.	2.5	78
35	Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection?. Lancet Respiratory Medicine, the, 2020, 8, 436-438.	5.2	314
36	Factors Associated with Low Lung Function in Different Age Bins in the General Population. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 292-296.	2.5	36

#	Article	IF	CITATIONS
37	Tabaco y alteraciones intersticiales: ¿una asociación plausible?. Archivos De Bronconeumologia, 2020, 56, 422-423.	0.4	0
38	Reduced airway levels of fatty-acid binding protein 4 in COPD: relationship with airway infection and disease severity. Respiratory Research, 2020, 21, 21.	1.4	9
39	Multi-level immune response network in mild-moderate Chronic Obstructive Pulmonary Disease (COPD). Respiratory Research, 2019, 20, 152.	1.4	34
40	EARLY COPD: determinantes de la aparición y progresión de la enfermedad pulmonar obstructiva crónica en adultos jóvenes. Protocolo de un estudio caso-control con seguimiento. Archivos De Bronconeumologia, 2019, 55, 312-318.	0.4	8
41	The BIOMEPOC Project: Personalized Biomarkers and Clinical Profiles in Chronic Obstructive Pulmonary Disease. Archivos De Bronconeumologia, 2019, 55, 93-99.	0.4	5
42	Determinants of the Appearance and Progression of Early-Onset Chronic Obstructive Pulmonary Disease in Young Adults. A Case–Control Study With Follow-Up. Archivos De Bronconeumologia, 2019, 55, 312-318.	0.4	4
43	Relationship between the respiratory microbiome and the severity of airflow limitation, history of exacerbations and circulating eosinophils in COPD patients. BMC Pulmonary Medicine, 2019, 19, 112.	0.8	28
44	Global lung health: the dangers of mild lung function impairment. The Lancet Global Health, 2019, 7, e542-e543.	2.9	3
45	Smoking Impairs the Immunomodulatory Capacity of Lung-Resident Mesenchymal Stem Cells in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 575-583.	1.4	13
46	Chronic Airway Diseases Early Stratification (CADSET): a new ERS Clinical Research Collaboration. European Respiratory Journal, 2019, 53, 1900217.	3.1	25
47	Building Strong Neighborhoods in the Lung with a Little Help from My Mesenchymal Stem Cells. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1176-1178.	2.5	2
48	Lung function trajectories in health and disease. Lancet Respiratory Medicine, the, 2019, 7, 358-364.	5.2	213
49	Proyecto de biomarcadores y perfiles clÃnicos personalizados en la enfermedad pulmonar obstructiva crónica (proyecto BIOMEPOC). Archivos De Bronconeumologia, 2019, 55, 93-99.	0.4	18
50	Do sputum or circulating blood samples reflect the pulmonary transcriptomic differences of COPD patients? A multi-tissue transcriptomic network META-analysis. Respiratory Research, 2019, 20, 5.	1.4	9
51	From systems biology to P4 medicine: applications in respiratory medicine. European Respiratory Review, 2018, 27, 170110.	3.0	35
52	COPD beyond smoking: new paradigm, novel opportunities. Lancet Respiratory Medicine, the, 2018, 6, 324-326.	5.2	47
53	Emphysema and extrapulmonary tissue loss in COPD: a multi-organ loss of tissue phenotype. European Respiratory Journal, 2018, 51, 1702146.	3.1	60
54	Hospitalizations due to exacerbations of COPD: A big data perspective. Respiratory Medicine, 2018, 145, 219-225.	1.3	21

#	Article	IF	CITATIONS
55	The Changing Landscape of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 978-981.	2.5	5
56	Characterization, localization and comparison of c-Kit+ lung cells in never smokers and smokers with and without COPD. BMC Pulmonary Medicine, 2018, 18, 123.	0.8	6
57	Bone marrow characterization in COPD: a multi-level network analysis. Respiratory Research, 2018, 19, 118.	1.4	8
58	Precision medicine in COPD exacerbations. Lancet Respiratory Medicine, the, 2018, 6, 657-659.	5. 2	23
59	How to Define Early Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 973-973.	2.5	6
60	The Overlap of Lung Tissue Transcriptome of Smoke Exposed Mice with Human Smoking and COPD. Scientific Reports, 2018, 8, 11881.	1.6	18
61	Distribution, temporal stability and association with all-cause mortality of the 2017 GOLD groups in the ECLIPSE cohort. Respiratory Medicine, 2018, 141, 14-19.	1.3	12
62	The microbiome in respiratory medicine: current challenges and future perspectives. European Respiratory Journal, 2017, 49, 1602086.	3.1	194
63	Integrative Genomics of Emphysema-Associated Genes Reveals Potential Disease Biomarkers. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 411-418.	1.4	28
64	Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L92-L103.	1.3	32
65	Multi-level differential network analysis of COPD exacerbations. European Respiratory Journal, 2017, 50, 1700075.	3.1	38
66	Precision medicine in airway diseases: moving to clinical practice. European Respiratory Journal, 2017, 50, 1701655.	3.1	151
67	What does endotyping mean for treatment in chronic obstructive pulmonary disease?. Lancet, The, 2017, 390, 980-987.	6.3	78
68	Towards a global initiative for fibrosis treatment (GIFT). ERJ Open Research, 2017, 3, 00106-2017.	1.1	5
69	Lung function in early adulthood and health in later life: a transgenerational cohort analysis. Lancet Respiratory Medicine,the, 2017, 5, 935-945.	5.2	235
70	COPD: algorithms and clinical management. European Respiratory Journal, 2017, 50, 1701733.	3.1	3
71	The EASI model: A first integrative computational approximation to the natural history of COPD. PLoS ONE, 2017, 12, e0185502.	1.1	4
72	Multilevel, Dynamic Chronic Obstructive Pulmonary Disease Heterogeneity. A Challenge for Personalized Medicine. Annals of the American Thoracic Society, 2016, 13, S466-S470.	1.5	20

#	Article	IF	CITATIONS
73	The inflammasome pathway in stable COPD and acute exacerbations. ERJ Open Research, 2016, 2, 00002-2016.	1.1	47
74	Biomarkers, the control panel and personalized <scp>COPD</scp> medicine. Respirology, 2016, 21, 24-33.	1.3	42
75	Network Analysis of Lung Transcriptomics Reveals a Distinct B-Cell Signature in Emphysema. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1242-1253.	2.5	99
76	Personalized Respiratory Medicine: Exploring the Horizon, Addressing the Issues. Summary of a BRN-AJRCCM Workshop Held in Barcelona on June 12, 2014. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 391-401.	2.5	61
77	Molecular and clinical diseasome of comorbidities in exacerbated COPD patients. European Respiratory Journal, 2015, 46, 1001-1010.	3.1	32
78	Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. New England Journal of Medicine, 2015, 373, 111-122.	13.9	974
79	Network analysis: a way forward for understanding COPD multimorbidity. European Respiratory Journal, 2015, 46, 591-592.	3.1	12
80	Systemic Inflammatory Response to Smoking in Chronic Obstructive Pulmonary Disease: Evidence of a Gender Effect. PLoS ONE, 2014, 9, e97491.	1.1	40
81	Fibrinogen and COPD: Now what?. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2014, 2, 1-3.	0.5	16
82	Network medicine, multimorbidity and the lung in the elderly. European Respiratory Journal, 2014, 44, 775-788.	3.1	63
83	<scp>HLAâ€DQ2</scp> / <scp>DQ8</scp> and <i>><scp>HLAâ€DQB1</scp>*02</i> homozygosity typing by realâ€time polymerase chain reaction for the assessment of celiac disease genetic risk: evaluation of a Spanish celiac population. Tissue Antigens, 2014, 84, 545-553.	1.0	13
84	Network medicine analysis of COPD multimorbidities. Respiratory Research, 2014, 15, 111.	1.4	48
85	Lessons from ECLIPSE: a review of COPD biomarkers. Thorax, 2014, 69, 666-672.	2.7	125
86	HLA Distribution in COPD Patients. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2013, 10, 138-146.	0.7	15
87	Immune response in chronic obstructive pulmonary disease. Expert Review of Clinical Immunology, 2013, 9, 821-833.	1.3	39
88	Systemic Inflammation and Comorbidities in Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 2012, 9, 43-46.	3.5	58
89	Abnormal Lung Aging in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 306-313.	2.5	220
90	An investigation of the resolution of inflammation (catabasis) in COPD. Respiratory Research, 2012, 13, 101.	1.4	19

#	Article	IF	CITATIONS
91	Association of an SNP with intrathymic transcription of TSHR and Graves' disease: a role for defective thymic tolerance. Human Molecular Genetics, 2011, 20, 3415-3423.	1.4	74
92	CCL4L Polymorphisms and CCL4/CCL4L Serum Levels Are Associated with Psoriasis Severity. Journal of Investigative Dermatology, 2011, 131, 1830-1837.	0.3	25
93	Reassessing the role of HLAâ€DRB3 Tâ€cell responses: Evidence for significant expression and complementary antigen presentation. European Journal of Immunology, 2010, 40, 91-102.	1.6	21
94	ZNRD1 (Zinc Ribbon Domain–Containing 1) Is a Host Cellular Factor That Influences HIVâ€1 Replication and Disease Progression. Clinical Infectious Diseases, 2010, 50, 1022-1032.	2.9	42
95	Copy number variation in the CCL4L gene is associated with susceptibility to acute rejection in lung transplantation. Genes and Immunity, 2009, 10, 254-259.	2.2	24
96	High resolution definition of <i>HLAâ€DRB</i> haplotypes by a simplified microsatellite typing technique. Tissue Antigens, 2009, 74, 486-493.	1.0	7
97	Population structure in copy number variation and SNPs in the CCL4L chemokine gene. Genes and Immunity, 2008, 9, 279-288.	2.2	19
98	Real-Time PCR Using Fluorescent Resonance Emission Transfer Probes for HLA-B Typing. Human Immunology, 2006, 67, 374-385.	1.2	10
99	Development of a new HLA-DRB real-time PCR typing method. Human Immunology, 2005, 66, 85-91.	1.2	14
100	HLA-B27 genotyping by Fluorescent Resonance Emission Transfer (FRET) probes in real-time PCR. Human Immunology, 2004, 65, 826-838.	1.2	22
101	Can Circulating Biomarkers Identify Different FEV ₁ Trajectories of COPD Patients?. SSRN Electronic Journal, 0, , .	0.4	0
102	Organizing Pneumonia and COVID-19. SSRN Electronic Journal, 0, , .	0.4	0