Marc-André Parisien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6299633/publications.pdf

Version: 2024-02-01

78 papers 5,841 citations

39 h-index 76900 74 g-index

80 all docs

80 docs citations

80 times ranked

4610 citing authors

#	Article	IF	CITATIONS
1	Global Pyrogeography: the Current and Future Distribution of Wildfire. PLoS ONE, 2009, 4, e5102.	2.5	710
2	Climate change and disruptions to global fire activity. Ecosphere, 2012, 3, 1-22.	2.2	650
3	Wildfire-Driven Forest Conversion in Western North American Landscapes. BioScience, 2020, 70, 659-673.	4.9	323
4	Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 2009, 79, 127-154.	5.4	277
5	Fire-regime changes in Canada over the last half century. Canadian Journal of Forest Research, 2019, 49, 256-269.	1.7	261
6	Large fires as agents of ecological diversity in the North American boreal forest. International Journal of Wildland Fire, 2008, 17, 754.	2.4	147
7	Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biology and Biochemistry, 2019, 138, 107571.	8.8	139
8	Spatial variability in wildfire probability across the western United States. International Journal of Wildland Fire, 2012, 21, 313.	2.4	135
9	Short-interval wildfire and drought overwhelm boreal forest resilience. Scientific Reports, 2019, 9, 18796.	3.3	131
10	Climate changeâ€induced shifts in fire for <scp>M</scp> editerranean ecosystems. Global Ecology and Biogeography, 2013, 22, 1118-1129.	5.8	130
11	Resistance of the boreal forest to high burn rates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13888-13893.	7.1	123
12	The spatially varying influence of humans on fire probability in North America. Environmental Research Letters, 2016, 11, 075005.	5.2	116
13	Wildland fire deficit and surplus in the western United States, 1984–2012. Ecosphere, 2015, 6, 1-13.	2.2	114
14	Scale-dependent controls on the area burned in the boreal forest of Canada, 1980–2005. , 2011, 21, 789-805.		109
15	Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	107
16	Wildfireâ€mediated vegetation change in boreal forests of Alberta, Canada. Ecosphere, 2018, 9, e02156.	2.2	104
17	Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America. Ecosphere, 2016, 7, e01632.	2.2	103
18	Variability and drivers of burn severity in the northwestern Canadian boreal forest. Ecosphere, 2018, 9, e02128.	2.2	95

#	Article	IF	Citations
19	Climateâ€change refugia in boreal North America: what, where, and for how long?. Frontiers in Ecology and the Environment, 2020, 18, 261-270.	4.0	91
20	Projected changes in daily fire spread across Canada over the next century. Environmental Research Letters, 2017, 12, 025005.	5.2	85
21	Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nature Climate Change, 2020, 10, 1130-1136.	18.8	82
22	Spatial patterns of forest fires in Canada, 1980 - 1999. International Journal of Wildland Fire, 2006, 15, 361.	2.4	79
23	Fire Activity and Severity in the Western US Vary along Proxy Gradients Representing Fuel Amount and Fuel Moisture. PLoS ONE, 2014, 9, e99699.	2.5	75
24	Contributions of Ignitions, Fuels, and Weather to the Spatial Patterns of Burn Probability of a Boreal Landscape. Ecosystems, 2011, 14, 1141-1155.	3.4	72
25	Wildland fire risk research in Canada. Environmental Reviews, 2020, 28, 164-186.	4.5	69
26	A spatial evaluation of global wildfire-water risks to human and natural systems. Science of the Total Environment, 2018, 610-611, 1193-1206.	8.0	67
27	Giving Ecological Meaning to Satellite-Derived Fire Severity Metrics across North American Forests. Remote Sensing, 2019, 11, 1735.	4.0	63
28	The climate space of fire regimes in northâ€western North America. Journal of Biogeography, 2015, 42, 1736-1749.	3.0	59
29	Applications of simulation-based burn probability modelling: a review. International Journal of Wildland Fire, 2019, 28, 913.	2.4	56
30	Topoedaphic and Forest Controls on Post-Fire Vegetation Assemblies Are Modified by Fire History and Burn Severity in the Northwestern Canadian Boreal Forest. Forests, 2018, 9, 151.	2.1	55
31	Fire deficit increases wildfire risk for many communities in the Canadian boreal forest. Nature Communications, 2020, 11, 2121.	12.8	53
32	Future burn probability in south-central British Columbia. International Journal of Wildland Fire, 2016, 25, 200.	2.4	50
33	Use of artificial landscapes to isolate controls on burn probability. Landscape Ecology, 2010, 25, 79-93.	4.2	49
34	The potential and realized spread of wildfires across Canada. Global Change Biology, 2014, 20, 2518-2530.	9.5	49
35	Spatial and temporal dimensions of fire activity in the fireâ€prone eastern Canadian taiga. Global Change Biology, 2017, 23, 1152-1166.	9.5	49
36	Contributions of fire refugia to resilient ponderosa pine and dry mixedâ€conifer forest landscapes. Ecosphere, 2019, 10, e02809.	2.2	49

#	Article	IF	Citations
37	Considerations for modeling burn probability across landscapes with steep environmental gradients: an example from the Columbia Mountains, Canada. Natural Hazards, 2013, 66, 439-462.	3.4	48
38	Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Global Change Biology, 2017, 23, 3219-3230.	9.5	48
39	Distribution and dynamics of tree species across a fire frequency gradient in the James Bay region of Quebec. Canadian Journal of Forest Research, 2003, 33, 243-256.	1.7	45
40	Multi-scale evaluation of the environmental controls on burn probability in a southern Sierra Nevada landscape. International Journal of Wildland Fire, 2011, 20, 815.	2.4	42
41	Comparing landscape-based decision rules for placement of fuel treatments in the boreal mixedwood of western Canada. International Journal of Wildland Fire, 2007, 16, 664.	2.4	41
42	Potential impacts of climate change on the habitat of boreal woodland caribou. Ecosphere, 2018, 9, e02472.	2.2	39
43	Model-specification uncertainty in future area burned by wildfires in Canada. International Journal of Wildland Fire, 2018, 27, 164.	2.4	39
44	Peatland Hydrological Dynamics as A Driver of Landscape Connectivity and Fire Activity in the Boreal Plain of Canada. Forests, 2019, 10, 534.	2.1	38
45	Fuel accumulation in a high-frequency boreal wildfire regime: from wetland to upland. Canadian Journal of Forest Research, 2017, 47, 957-964.	1.7	34
46	Anthropogenic influence on wildfire activity in Alberta, Canada. International Journal of Wildland Fire, 2016, 25, 1131.	2.4	33
47	Fineâ€scale spatial climate variation and drought mediate the likelihood of reburning. Ecological Applications, 2018, 28, 573-586.	3.8	32
48	Climate change likely to reshape vegetation in North America's largest protected areas. Conservation Science and Practice, 2019, 1, e50.	2.0	31
49	Projected changes in fire size from daily spread potential in Canada over the 21st century. Environmental Research Letters, 2020, 15, 104048.	5.2	31
50	Effects of Lakes on Wildfire Activity in the Boreal Forests of Saskatchewan, Canada. Forests, 2016, 7, 265.	2.1	30
51	A Global Index for Mapping the Exposure of Water Resources to Wildfire. Forests, 2016, 7, 22.	2.1	29
52	Spatial and temporal variations of fire regimes in the Canadian Rocky Mountains and Foothills of southern Alberta. International Journal of Wildland Fire, 2016, 25, 1117.	2.4	29
53	Temporal Patterns of Wildfire Activity in Areas of Contrasting Human Influence in the Canadian Boreal Forest. Forests, 2018, 9, 159.	2.1	29
54	A Regional-Scale Index for Assessing the Exposure of Drinking-Water Sources to Wildfires. Forests, 2019, 10, 384.	2.1	23

#	Article	IF	CITATIONS
55	Trends in wildfire burn severity across Canada, 1985 to 2015. Canadian Journal of Forest Research, 2021, 51, 1230-1244.	1.7	23
56	Examining management scenarios to mitigate wildfire hazard to caribou conservation projects using burn probability modeling. Journal of Environmental Management, 2019, 233, 238-248.	7.8	22
57	Spatial planning of fire-agency stations as a function of wildfire likelihood in Thasos, Greece. Science of the Total Environment, 2020, 729, 139004.	8.0	21
58	Evaluating spatially-explicit burn probabilities for strategic fire management planning. WIT Transactions on Ecology and the Environment, 2008, , .	0.0	21
59	A method for creating a burn severity atlas: an example from Alberta, Canada. International Journal of Wildland Fire, 2020, 29, 995.	2.4	18
60	Climate-induced fire regime amplification in Alberta, Canada. Environmental Research Letters, 2022, 17, 055003.	5. 2	18
61	Stand Age Influence on Potential Wildfire Ignition and Spread in the Boreal Forest of Northeastern Canada. Ecosystems, 2018, 21, 1471-1486.	3.4	17
62	A framework for modeling habitat quality in disturbanceâ€prone areas demonstrated with woodland caribou and wildfire. Ecosphere, 2017, 8, e01787.	2.2	16
63	Prioritizing restoration of fragmented landscapes for wildlife conservation: A graph-theoretic approach. Biological Conservation, 2019, 232, 173-186.	4.1	14
64	Effect of Topography on Persistent Fire Refugia of the Canadian Rocky Mountains. Forests, 2018, 9, 285.	2.1	13
65	Soil Moisture Monitoring in a Temperate Peatland Using Multi-Sensor Remote Sensing and Linear Mixed Effects. Remote Sensing, 2018, 10, 903.	4.0	11
66	Area burned adjustments to historical wildland fires in Canada. Environmental Research Letters, 2021, 16, 064014.	5. 2	11
67	Improved fire severity mapping in the North American boreal forest using a hybrid composite method. Remote Sensing in Ecology and Conservation, 2022, 8, 222-235.	4.3	9
68	Fire History Sampling Strategy of Fire Intervals Associated with Mixed- to Full-Severity Fires in Southern Alberta, Canada. Forest Science, 2016, 62, 613-622.	1.0	8
69	Initial succession after wildfire in dry boreal forests of northwestern North America. Plant Ecology, 2022, 223, 789-809.	1.6	8
70	Science can map a solution to a fast-burning problem. Nature, 2016, 534, 297-297.	27.8	7
71	Persistent impact of conventional seismic lines on boreal vegetation structure following wildfire. Canadian Journal of Forest Research, 0, , .	1.7	7
72	Detecting critical nodes in forest landscape networks to reduce wildfire spread. PLoS ONE, 2021, 16, e0258060.	2.5	6

#	Article	IF	CITATIONS
73	Shortâ€and longâ€term wildfire threat when adapting infrastructure for wildlife conservation in the boreal forest. Ecological Applications, 2022, 32, e2606.	3.8	6
74	Landscape-level variability in the age underestimation of understory black spruce in the northern boreal forest of Quebec. Canadian Journal of Forest Research, 2005, 35, 633-642.	1.7	4
75	Scénarios de probabilité et puissance potentielle des feux de végétation dans le département des Landes, France. Canadian Journal of Forest Research, 2018, 48, 1587-1600.	1.7	4
76	Commentary on the article "Burn probability simulation and subsequent wildland fire activity in Alberta, Canada – Implications for risk assessment and strategic planning―by J.L. Beverly and N. McLoughlin. Forest Ecology and Management, 2020, 460, 117698.	3.2	4
77	Baseline geographic information on wildfire-watershed risk in Canada: needs, gaps, and opportunities. Canadian Water Resources Journal, 2022, 47, 1-18.	1.2	3
78	Effects of short-interval reburns in the boreal forest on soil bacterial communities compared to long-interval reburns. FEMS Microbiology Ecology, 2022, 98, .	2.7	3