Ming Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6299585/publications.pdf

Version: 2024-02-01

	1478505	1372567
191	6	10
citations	h-index	g-index
10	10	157
10	10	157
docs citations	times ranked	citing authors
	citations 10	191 6 citations h-index 10 10

#	Article	IF	CITATIONS
1	Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. Frontiers in Plant Science, 2019, 10, 1172.	3.6	85
2	A SPX domainâ€containing phosphate transporter from <i>Rhizophagus irregularis</i> handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas. New Phytologist, 2022, 234, 650-671.	7. 3	25
3	Arbuscular mycorrhizal fungi promote lead immobilization by increasing the polysaccharide content within pectin and inducing cell wall peroxidase activity. Chemosphere, 2021, 267, 128924.	8.2	18
4	Transcriptome Analysis of Arbuscular Mycorrhizal Casuarina glauca in Damage Mitigation of Roots on NaCl Stress. Microorganisms, 2022, 10, 15.	3.6	15
5	The auxinâ€inducible phosphate transporter AsPT5 mediates phosphate transport and is indispensable for arbuscule formation in Chinese milk vetch at moderately high phosphate supply. Environmental Microbiology, 2020, 22, 2053-2079.	3.8	11
6	Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Microorganisms, 2021, 9, 1557.	3.6	9
7	Transcriptional regulation of metal metabolism- and nutrient absorption-related genes in Eucalyptus grandis by arbuscular mycorrhizal fungi at different zinc concentrations. BMC Plant Biology, 2022, 22, 76.	3.6	9
8	VBA–AMF: A VBA Program Based on the Magnified Intersections Method for Quantitative Recording of Root Colonization by Arbuscular Mycorrhizal Fungi. Indian Journal of Microbiology, 2020, 60, 374-378.	2.7	8
9	Cultivation of arbuscular mycorrhizal Broussonetia papyrifera seedlings by planting the mycorrhizal nurse plant downwards. Mycorrhiza, 2022, 32, 203-212.	2.8	8
10	Changes in Rhizosphere Soil Fungal Communities of Pinus tabuliformis Plantations at Different Development Stages on the Loess Plateau. International Journal of Molecular Sciences, 2022, 23, 6753.	4.1	3