
Rais Latypov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6299567/publications.pdf Version: 2024-02-01

PAIS LATYDOV

#	Article	IF	CITATIONS
1	Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks. Earth-Science Reviews, 2015, 141, 56-81.	9.1	79
2	Platinum-bearing chromite layers are caused by pressure reduction during magma ascent. Nature Communications, 2018, 9, 462.	12.8	73
3	The Origin of Basic-Ultrabasic Sills with S-, D-, and I-shaped Compositional Profiles by in Situ Crystallization of a Single Input of Phenocryst-poor Parental Magma. Journal of Petrology, 2003, 44, 1619-1656.	2.8	61
4	Field Evidence for the <i>In Situ</i> Crystallization of the Merensky Reef. Journal of Petrology, 2015, 56, 2341-2372.	2.8	60
5	Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril'sk Province (Russia): Evidence from copper and sulfur isotopes. Lithos, 2014, 204, 172-187.	1.4	56
6	The Origin of Marginal Compositional Reversals in Basic-Ultrabasic Sills and Layered Intrusions by Soret Fractionation. Journal of Petrology, 2003, 44, 1579-1618.	2.8	53
7	Towards a model for the in situ origin of PGE reefs in layered intrusions: insights from chromitite seams of the Rum Eastern Layered Intrusion, Scotland. Contributions To Mineralogy and Petrology, 2013, 166, 309-327.	3.1	52
8	A Novel Hypothesis for Origin of Massive Chromitites in the Bushveld Igneous Complex. Journal of Petrology, 2017, 58, 1899-1940.	2.8	50
9	The significance of magmatic erosion for bifurcation of UG1 chromitite layers in the Bushveld Complex. Ore Geology Reviews, 2017, 90, 65-93.	2.7	45
10	Origin of Platinum Deposits in Layered Intrusions by In Situ Crystallization: Evidence from Undercutting Merensky Reef of the Bushveld Complex. Journal of Petrology, 2017, 58, 715-761.	2.8	42
11	An intrusive origin of some UG-1 chromitite layers in the Bushveld Igneous Complex, South Africa: Insights from field relationships. Ore Geology Reviews, 2017, 90, 94-109.	2.7	40
12	On the development of internal chemical zonation in small mafic dykes. Geological Magazine, 2010, 147, 1-12.	1.5	35
13	Phase equilibria constraints on relations of ore-bearing intrusions with flood basalts in the Noril'sk region, Russia. Contributions To Mineralogy and Petrology, 2002, 143, 438-449.	3.1	34
14	Revisiting problem of chilled margins associated with marginal reversals in mafic–ultramafic intrusive bodies. Lithos, 2007, 99, 178-206.	1.4	31
15	Mantle source of the 2.44–2.50-Ga mantle plume-related magmatism in the Fennoscandian Shield: evidence from Os, Nd, and Sr isotope compositions of the Monchepluton and Kemi intrusions. Mineralium Deposita, 2016, 51, 1055-1073.	4.1	31
16	A fundamental dispute: A discussion of "On some fundamentals of igneous petrology―by Bruce D. Marsh, Contributions to Mineralogy and Petrology (2013) 166: 665–690. Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	30
17	A 'Three-Increase Model' for the Origin of the Marginal Reversal of the Koitelainen Layered Intrusion, Finland. Journal of Petrology, 2011, 52, 733-764.	2.8	28
18	Plagioclase compositions give evidence for in situ crystallization under horizontal flow conditions in mafic sills. Geology, 2012, 40, 883-886.	4.4	28

Rais Latypov

#	Article	IF	CITATIONS
19	Evidence for igneous differentiation in Sudbury Igneous Complex and impact-driven evolution of terrestrial planet proto-crusts. Nature Communications, 2019, 10, 508.	12.8	28
20	Dynamics of evolving magma chambers: textural and chemical evolution of cumulates at the arrival of new liquidus phases. Earth-Science Reviews, 2020, 210, 103388.	9.1	27
21	Mafic–Ultramafic Sills: New Insights from M- and S-shaped Mineral and Whole-rock Compositional Profiles. Journal of Petrology, 2013, 54, 2155-2191.	2.8	26
22	Testing the Validity of the Petrological Hypothesis 'No Phenocrysts, No Post-emplacement Differentiation'. Journal of Petrology, 2009, 50, 1047-1069.	2.8	24
23	Fossilized solidification fronts in the Bushveld Complex argue for liquid-dominated magmatic systems. Nature Communications, 2020, 11, 2909.	12.8	24
24	Monomineralic anorthosites in layered intrusions are indicators of the magma chamber replenishment by plagioclase-only-saturated melts. Scientific Reports, 2020, 10, 3839.	3.3	24
25	Arguments against syn-magmatic sills in the Bushveld Complex, South Africa. South African Journal of Geology, 2017, 120, 565-574.	1.2	23
26	Re-Os AND S ISOTOPE CONSTRAINTS ON TIMING AND SOURCE HETEROGENEITY OF PGE-Cu-Ni SULFIDE ORES: A CASE STUDY AT THE TALNAKH ORE JUNCTION, NORIL'SK PROVINCE, RUSSIA. Canadian Mineralogist, 2011, 49, 1653-1677.	1.0	22
27	The Merensky Cyclic Unit, Bushveld Complex, South Africa: Reality or Myth?. Minerals (Basel,) Tj ETQq1 1 0.7843	14.rgBT /(2.0	Dverlock 10 T
28	Two independent processes responsible for compositional zonation in mafic dykes of the Ãland-Ãboland Dyke Swarm, Kestiö Island, SW Finland. Lithos, 2009, 112, 382-396.	1.4	18
29	Magma differentiation and crystallization in basaltic conduits by two competing petrogenetic processes. Lithos, 2012, 148, 142-161.	1.4	18
30	Processes Operating during the Initial Stage of Magma Chamber Evolution: Insights from the Marginal Reversal of the Imandra Layered Intrusion, Russia. Journal of Petrology, 2012, 53, 3-26.	2.8	18
31	Phase equilibria testing of a multiple pulse mechanism for origin of mafic–ultramafic intrusions: a case example of the Shiant Isles Main Sill, NW Scotland. Geological Magazine, 2009, 146, 851-875.	1.5	17
32	Merensky-type platinum deposits and a reappraisal of magma chamber paradigms. Scientific Reports, 2019, 9, 8807.	3.3	17
33	Fine-scale chemical zonation in small mafic dykes, Kestiö Island, SW Finland. Geological Magazine, 2009, 146, 485-496.	1.5	16
34	Chromitite Dykes in the Monchegorsk Layered Intrusion, Russia: <i>In Situ</i> Crystallization from Chromite-Saturated Magma Flowing in Conduits. Journal of Petrology, 2015, 56, 2395-2424.	2.8	15
35	Multiple Merensky Reef of the Bushveld Complex, South Africa. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	14
36	Chromitite layers indicate the existence of large, long-lived, and entirely molten magma chambers. Scientific Reports, 2022, 12, 4092.	3.3	14

RAIS LATYPOV

#	Article	IF	CITATIONS
37	Petrology and geochemistry of the Karaj Dam basement sill: Implications for geodynamic evolution of the Alborz magmatic belt. Chemie Der Erde, 2015, 75, 237-260.	2.0	13
38	Magmatic karst reveals dynamics of crystallization and differentiation in basaltic magma chambers. Scientific Reports, 2021, 11, 7341.	3.3	13
39	Basal Reversals in Mafic Sills and Layered Intrusions. Springer Geology, 2015, , 259-293.	0.3	11
40	PGE reefs as an in situ crystallization phenomenon: the Nadezhda gabbronorite body, Lukkulaisvaara layered intrusion, Fennoscandian Shield, Russia. Mineralogy and Petrology, 2008, 92, 211-242.	1.1	10
41	Idiomorphic oikocrysts of clinopyroxene produced by a peritectic reaction within a solidification front of the Bushveld Complex. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	10
42	Spatial Association Between Platinum Minerals and Magmatic Sulfides Imaged with the Maia Mapper and Implications for the Origin of the Chromite-Sulfide-PGE Association. Canadian Mineralogist, 2021, ,	1.0	10
43	A note on the erosive nature of potholes in the Bushveld Complex. South African Journal of Geology, 2019, 122, 555-560.	1.2	9
44	Reply to Discussion of "Arguments against synmagmatic sills in the Bushveld Complex, South Africa― by Roger Scoon and Andrew Mitchell (2018). South African Journal of Geology, 2018, 121, 211-216.	1.2	9
45	New Insights on the Origin of Ultramafic-Mafic Intrusions and Associated Ni-Cu-PGE Sulfide Deposits of the Noril'sk and Taimyr Provinces, Russia. , 2018, , 197-238.		8
46	Origin of discordant ultramafic pegmatites in the Bushveld Complex from externally-derived magmas. South African Journal of Geology, 2018, 121, 287-310.	1.2	8
47	New insights into precious metal enrichment on the Isle of Rum, Scotland. Geology Today, 2014, 30, 134-141.	0.9	7
48	Comment on "The Stillwater Complex: Integrating Zircon Geochronological and Geochemical Constraints on the Age, Emplacement History and Crystallization of a Large, Open-System Layered Intrusion―by Wall et al. (J. Petrology, 59, 153–190, 2018). Journal of Petrology, 2019, 60, 1095-1098.	2.8	7
49	Origin of non-cotectic cumulates: A novel approach. Geology, 2020, 48, 604-608.	4.4	7
50	Too large to be seen: Regional structures in Lower and Middle Group chromitites of the Bushveld Complex, South Africa. Ore Geology Reviews, 2021, 139, 104520.	2.7	7
51	Graphical analysis of the orthopyroxene-pigeonite-augite-plagioclase equilibrium at liquidus temperatures and low pressure. American Mineralogist, 2001, 86, 547-554.	1.9	6
52	Fine-grained mafic bodies as preserved portions of magma replenishing layered intrusions: the Nadezhda gabbronorite body, Lukkulaisvaara intrusion, Fennoscandian Shield, Russia. Mineralogy and Petrology, 2008, 92, 165-209.	1.1	6
53	Infiltration metasomatism in layered intrusions revisited: a reinterpretation of compositional reversals at the base of cyclic units. Mineralogy and Petrology, 2008, 92, 243-258.	1.1	6
54	Prolonged magma emplacement as a mechanism for the origin of the marginal reversal of the Fongen–Hyllingen layered intrusion, Norway. Geological Magazine, 2012, 149, 909-926.	1.5	5

RAIS LATYPOV

#	Article	IF	CITATIONS
55	A triple S-shaped compositional profile in a Karoo dolerite sill—Evidence of concurrent multiple fractionation processes. Geology, 2017, 45, 603-606.	4.4	4
56	Reply to Comments by Fergus G. F. Gibb and C. Michael B. Henderson on 'Mafic-Ultramafic Sills: New Insights from M- and S-shaped Mineral and Whole-rock Compositional Profiles'. Journal of Petrology, 2014, 55, 1015-1017.	2.8	2
57	Editorial – Platinum-group element deposits in mafic and ultramafic rocks – a special issue in memoriam of Eugen F. Stumpfl. Mineralogy and Petrology, 2008, 92, 1-2.	1.1	1
58	†From Igneous Petrology to Ore Genesis': an Introduction to this Thematic Issue of <i>Journal of Petrology</i> . Journal of Petrology, 2015, 56, 2295-2296.	2.8	0
59	Adcumulate mafic dykes in layered intrusions: a case study of a late-stage dyke in the Bayantsagaan layered intrusion, Mongolia. Geological Magazine, 2015, 152, 621-631.	1.5	0