
Borja VelÃ;zquez-MartÃ-

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6298860/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Separation of virgin plastic polymers and post-consumer mixed plastic waste by sinking-flotation technique. Environmental Science and Pollution Research, 2022, 29, 1364-1374.	2.7	7
2	Evaluation of methane production from the anaerobic co-digestion of manure of guinea pig with lignocellulosic Andean residues. Environmental Science and Pollution Research, 2022, 29, 2227-2243.	2.7	6
3	Potential Use of Pruning Residues from Avocado Trees as Energy Input in Rural Communities. Energies, 2022, 15, 1715.	1.6	5
4	Quantification Model of Residual Biomass in Citrus Uprooting. Agronomy, 2022, 12, 1648.	1.3	1
5	Effect of the coâ€digestion of agricultural lignocellulosic residues with manure from South American camelids. Biofuels, Bioproducts and Biorefining, 2021, 15, 525-544.	1.9	5
6	Biochemical potential of methane (BMP) of camelid waste and the Andean region agricultural crops. Renewable Energy, 2021, 168, 406-415.	4.3	15
7	Equipment Performance, Costs and Constraints of Packaging and Transporting Rice Straw for Alternative Uses to Burning in the "Parc Natural l'Albufera de València―(Spain). Agriculture (Switzerland), 2021, 11, 570.	1.4	10
8	Evaluation and Characterization of Timber Residues of Pinus spp. as an Energy Resource for the Production of Solid Biofuels in an Indigenous Community in Mexico. Forests, 2021, 12, 977.	0.9	9
9	Characterization of teak pruning waste as an energy resource. Agroforestry Systems, 2020, 94, 241-250.	0.9	7
10	Review of Moringa oleifera as forage meal (leaves plus stems) intended for the feeding of non-ruminant animals. Animal Feed Science and Technology, 2020, 260, 114338.	1.1	20
11	Logistic models for distribution of straw in crops of fruit tree plots where mulch is applied. Computers and Electronics in Agriculture, 2020, 175, 105604.	3.7	1
12	In Vitro Characterization of Indigenous Probiotic Strains Isolated from Colombian Creole Pigs. Animals, 2020, 10, 1204.	1.0	9
13	Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review. Energies, 2020, 13, 3573.	1.6	54
14	Estimation of the Energy Consumption of the Rice and Corn Drying Process in the Equatorial Zone. Applied Sciences (Switzerland), 2020, 10, 7497.	1.3	9
15	Cyanobacterial Biomass Produced in the Wastewater of the Dairy Industry and Its Evaluation in Anaerobic Co-Digestion with Cattle Manure for Enhanced Methane Production. Processes, 2020, 8, 1290.	1.3	7
16	Classification of successional stages in native forests of the Argentine Spinal through neural networks. Land Degradation and Development, 2019, 30, 2064-2072.	1.8	2
17	Autonomous Installations for Monitoring the "Protector Prosperina" Forest. Applied Sciences (Switzerland), 2019, 9, 4034.	1.3	1
18	Thermal Evaluation of a Hybrid Dryer with Solar and Geothermal Energy for Agroindustry Application. Applied Sciences (Switzerland), 2019, 9, 4079.	1.3	11

#	Article	IF	CITATIONS
19	Dendrometric analysis of Tamarix africana L.,species of river and wetlands of the Mediterranean area. Characterisation of biomass. Biomass and Bioenergy, 2019, 120, 426-432.	2.9	Ο
20	Estimating residual biomass of olive tree crops using terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation, 2019, 75, 163-170.	1.4	18
21	Viability of Biogas Production and Determination of Bacterial Kinetics in Anaerobic Co-digestion of Cabbage Waste and Livestock Manure. Waste and Biomass Valorization, 2019, 10, 2129-2137.	1.8	5
22	Development of biomass fast proximate analysis by thermogravimetric scale. Renewable Energy, 2018, 126, 954-959.	4.3	12
23	Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller). Energies, 2018, 11, 1189.	1.6	3
24	Compatibility between Crops and Solar Panels: An Overview from Shading Systems. Sustainability, 2018, 10, 743.	1.6	50
25	Systems of Pruning on Jigacho (Vasconcellea stipulata Badillo) under Greenhouse Conditions. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 1060-1064.	0.5	0
26	Modeling the Calorific Value of Biomass from Fruit Trees Using Elemental Analysis Data. , 2017, , .		6
27	Modeling of Production and Quality of Bioethanol Obtained from Sugarcane Fermentation Using Direct Dissolved Sugars Measurements. Energies, 2016, 9, 319.	1.6	3
28	Quantification based on dimensionless dendrometry and drying of residual biomass from the pruning of orange trees in Bolivar province (Ecuador). Biofuels, Bioproducts and Biorefining, 2016, 10, 175-185.	1.9	9
29	Dendrometric characterization of corn cane residues and drying models in natural conditions in Bolivar Province (Ecuador). Renewable Energy, 2016, 86, 745-750.	4.3	6
30	Prediction models based on higher heating value from the elemental analysis of neem, mango, avocado, banana, and carob trees in Guayas (Ecuador). Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	14
31	Estimation of pruning biomass of olive trees using airborne discrete-return LiDAR data. Biomass and Bioenergy, 2015, 81, 315-321.	2.9	22
32	Dendrometric analysis of olive trees for wood biomass quantification in Mediterranean orchards. Agroforestry Systems, 2014, 88, 755-765.	0.9	18
33	Quantitative and qualitative characteristics of biomass derived from pruning Phoenix canariensis hort. ex Chabaud. and Phoenix dactilifera L. Renewable Energy, 2014, 71, 545-552.	4.3	17
34	Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of AlmerÃa (Spain). Fuel, 2014, 116, 377-387.	3.4	67
35	Prediction models for estimating pruned biomass obtained from Platanus hispanica Münchh. used for material surveys in urban forests. Renewable Energy, 2014, 66, 178-184.	4.3	23
36	An application of the vehicle routing problem to biomass transportation. Biosystems Engineering, 2014, 124, 40-52.	1.9	44

#	Article	IF	CITATIONS
37	Estimation of wood volume and height of olive tree plantations using airborne discrete-return LiDAR data. GIScience and Remote Sensing, 2014, 51, 17-29.	2.4	32
38	Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban areas. Renewable Energy, 2014, 62, 478-483.	4.3	20
39	Residual biomass calculation from individual tree architecture using terrestrial laser scanner and ground-level measurements. Computers and Electronics in Agriculture, 2013, 93, 90-97.	3.7	31
40	Available residual biomass obtained from pruning Morus alba L. trees cultivated inÂurban forest. Renewable Energy, 2013, 60, 27-33.	4.3	25
41	Chemical characterization of traditional varietal olive oils in East of Spain. Food Research International, 2013, 54, 1934-1940.	2.9	20
42	Different methodologies for calculating crown volumes of Platanus hispanica trees using terrestrial laser scanner and a comparison with classical dendrometric measurements. Computers and Electronics in Agriculture, 2013, 90, 176-185.	3.7	58
43	Assessment of factors affecting shrub volume estimations using airborne discrete-return LiDAR data in Mediterranean areas. Journal of Applied Remote Sensing, 2012, 6, 063544.	0.6	6
44	Estimation of biomass and volume of shrub vegetation using LiDAR and spectral data in a Mediterranean environment. Biomass and Bioenergy, 2012, 46, 710-721.	2.9	39
45	Calculation of biomass volume of citrus trees from an adapted dendrometry. Biosystems Engineering, 2012, 112, 285-292.	1.9	18
46	Estimation of pruned biomass form dendrometric parameters on urban forests: Case study of Sophora japonica. Renewable Energy, 2012, 47, 188-193.	4.3	23
47	A review of the mathematical models for predicting the heating value of biomass materials. Renewable and Sustainable Energy Reviews, 2012, 16, 3065-3083.	8.2	196
48	Mechanized methods for harvesting residual biomass from Mediterranean fruit tree cultivations. Scientia Agricola, 2012, 69, 180-188.	0.6	16
49	Estimation of shrub biomass by airborne LiDAR data in small forest stands. Forest Ecology and Management, 2011, 262, 1697-1703.	1.4	74
50	Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass and Bioenergy, 2011, 35, 3208-3217.	2.9	88
51	Quantification of the residual biomass obtained from pruning of vineyards in Mediterranean area. Biomass and Bioenergy, 2011, 35, 3453-3464.	2.9	52
52	Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves. Renewable Energy, 2011, 36, 621-626.	4.3	39
53	Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renewable and Sustainable Energy Reviews, 2011, 15, 948-955.	8.2	161
54	Indices of ergonomic-psycholsociological workplace quality in the greenhouses of AlmerÃa (Spain): Crops of cucumbers, peppers, aubergines and melons. Safety Science, 2011, 49, 746-750.	2.6	17

Borja VelÃizquez-MartÃ-

#	Article	IF	CITATIONS
55	Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. International Journal of Digital Earth, 2011, 4, 521-538.	1.6	53
56	Mathematical algorithms to locate factories to transform biomass in bioenergy focused on logistic network construction. Renewable Energy, 2010, 35, 2136-2142.	4.3	59
57	The Influence of Mechanical Pruning in Cost Reduction, Production of Fruit, and Biomass Waste in Citrus Orchards. Applied Engineering in Agriculture, 2010, 26, 531-540.	0.3	24
58	Dendrometric and dasometric analysis of the bushy biomass in Mediterranean forests. Forest Ecology and Management, 2010, 259, 875-882.	1.4	25
59	Analysis of the process of biomass harvesting with collecting-chippers fed by pick up headers in plantations of olive trees. Biosystems Engineering, 2009, 104, 184-190.	1.9	24
60	GIS Application to Define Biomass Collection Points as Sources for Linear Programming of Delivery Networks. Transactions of the ASABE, 2009, 52, 1069-1078.	1.1	24
61	Work conditions for microwave applicators designed to eliminate undesired vegetation in a field. Biosystems Engineering, 2008, 100, 31-37.	1.9	12
62	A SOLID CARBON DIOXIDE (DRY ICE) COOLING SYSTEM FOR THE MECHANIZED AERIAL RELEASE OF STERILE MALE CERATITIS CAPITATA. Transactions of the ASABE, 2006, 49, 335-340.	1.1	2
63	Germination Inhibition of Undesirable Seed in the Soil using Microwave Radiation. Biosystems Engineering, 2006, 93, 365-373.	1.9	15
64	Determination of Dielectric Properties of Agricultural Soil. Biosystems Engineering, 2005, 91, 119-125.	1.9	17
65	Thermal Effects of Microwave Energy in Agricultural Soil Radiation. Journal of Infrared, Millimeter and Terahertz Waves, 2004, 25, 1109-1122.	0.6	8
66	Review of Mathematical Models for the Anaerobic Digestion Process. , 0, , .		19
67	Anaerobic Co-digestion of Slaughter Residues with Agricultural Waste of Amaranth Quinoa and Wheat. Bioenergy Research, 0, , 1.	2.2	0
68	Uso de tertulias dial $ ilde{A}^3$ gicas. Resultados en los ex $ ilde{A}_i$ menes de ciencia agraria. , 0, , .		0
69	Aprendizaje mediante el ejercicio práctico de actividades en asignaturas de ciencias agrarias. , 0, , .		0