Christina Spry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6298695/publications.pdf Version: 2024-02-01

CHDISTINIA SDDV

#	Article	IF	CITATIONS
1	Exploring Heteroaromatic Rings as a Replacement for the Labile Amide of Antiplasmodial Pantothenamides. Journal of Medicinal Chemistry, 2021, 64, 4478-4497.	6.4	8
2	Targeting <i>Mycobacterium tuberculosis</i> CoaBC through Chemical Inhibition of 4′-Phosphopantothenoyl- <scp>l</scp> -cysteine Synthetase (CoaB) Activity. ACS Infectious Diseases, 2021, 7, 1666-1679.	3.8	3
3	A novel heteromeric pantothenate kinase complex in apicomplexan parasites. PLoS Pathogens, 2021, 17, e1009797.	4.7	8
4	Inhibiting Mycobacterium tuberculosis CoaBC by targeting an allosteric site. Nature Communications, 2021, 12, 143.	12.8	8
5	Toward a Stable and Potent Coenzyme A-Targeting Antiplasmodial Agent: Structure–Activity Relationship Studies of <i>N</i> -Phenethyl-α-methyl-pantothenamide. ACS Infectious Diseases, 2020, 6, 1844-1854.	3.8	15
6	Structural insights into <i>Escherichia coli</i> phosphopantothenoylcysteine synthetase by native ion mobility–mass spectrometry. Biochemical Journal, 2019, 476, 3125-3139.	3.7	4
7	Structure-activity analysis of CJ-15,801 analogues that interact with Plasmodium falciparum pantothenate kinase and inhibit parasite proliferation. European Journal of Medicinal Chemistry, 2018, 143, 1139-1147.	5.5	16
8	Structure–Activity Relationships of Antiplasmodial Pantothenamide Analogues Reveal a New Way by Which Triazoles Mimic Amide Bonds. ChemMedChem, 2018, 13, 2677-2683.	3.2	12
9	Mutations in the pantothenate kinase of Plasmodium falciparum confer diverse sensitivity profiles to antiplasmodial pantothenate analogues. PLoS Pathogens, 2018, 14, e1006918.	4.7	24
10	Antiplasmodial Mode of Action of Pantothenamides: Pantothenate Kinase Serves as a Metabolic Activator Not as a Target. ACS Infectious Diseases, 2017, 3, 527-541.	3.8	29
11	Coenzyme A Biosynthesis. , 2015, , 1-11.		0
12	CHAPTER 8. Fragment-Based Discovery of Antibacterials. RSC Drug Discovery Series, 2015, , 177-213.	0.3	0
13	A miniaturized assay for measuring small molecule phosphorylation in the presence of complex matrices. Analytical Biochemistry, 2014, 451, 76-78.	2.4	16
14	Exploiting the coenzyme A biosynthesis pathway for the identification of new antimalarial agents: the case for pantothenamides. Biochemical Society Transactions, 2014, 42, 1087-1093.	3.4	20
15	Structural Modification of Pantothenamides Counteracts Degradation by Pantetheinase and Improves Antiplasmodial Activity. ACS Medicinal Chemistry Letters, 2013, 4, 784-789.	2.8	48
16	Pantothenamides Are Potent, On-Target Inhibitors of Plasmodium falciparum Growth When Serum Pantetheinase Is Inactivated. PLoS ONE, 2013, 8, e54974.	2.5	80
17	The Human Malaria Parasite Plasmodium falciparum Is Not Dependent on Host Coenzyme A Biosynthesis. Journal of Biological Chemistry, 2009, 284, 24904-24913.	3.4	28
18	Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiology Reviews, 2008, 32, 56-106.	8.6	237

#	Article	IF	CITATIONS
19	Feedback Inhibition of Pantothenate Kinase Regulates Pantothenol Uptake by the Malaria Parasite. Journal of Biological Chemistry, 2007, 282, 25395-25405.	3.4	19
20	A Class of Pantothenic Acid Analogs Inhibits Plasmodium falciparum Pantothenate Kinase and Represses the Proliferation of Malaria Parasites. Antimicrobial Agents and Chemotherapy, 2005, 49, 4649-4657.	3.2	57