
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6298427/publications.pdf Version: 2024-02-01

ANDREA KOUSE

#	Article	IF	CITATIONS
1	Supercritical water gasification. Biofuels, Bioproducts and Biorefining, 2008, 2, 415-437.	1.9	438
2	Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, 2013, 17, 515-521.	2.8	399
3	Influence of the Heating Rate and the Type of Catalyst on the Formation of Key Intermediates and on the Generation of Gases During Hydropyrolysis of Glucose in Supercritical Water in a Batch Reactor. Industrial & Engineering Chemistry Research, 2004, 43, 502-508.	1.8	290
4	Hydrothermal biomass gasification. Journal of Supercritical Fluids, 2009, 47, 391-399.	1.6	290
5	Supercritical water gasification of biomass for hydrogen production – Review. Journal of Supercritical Fluids, 2018, 133, 573-590.	1.6	279
6	Chemical Reactions of C1 Compounds in Near-Critical and Supercritical Water. Chemical Reviews, 2004, 104, 5803-5822.	23.0	262
7	Key Compounds of the Hydropyrolysis of Glucose in Supercritical Water in the Presence of K2CO3. Industrial & Engineering Chemistry Research, 2003, 42, 3516-3521.	1.8	260
8	Gasification of Pyrocatechol in Supercritical Water in the Presence of Potassium Hydroxide. Industrial & Engineering Chemistry Research, 2000, 39, 4842-4848.	1.8	250
9	Influence of Proteins on the Hydrothermal Gasification and Liquefaction of Biomass. 2. Model Compounds. Industrial & Engineering Chemistry Research, 2007, 46, 87-96.	1.8	242
10	Water – A magic solvent for biomass conversion. Journal of Supercritical Fluids, 2015, 96, 36-45.	1.6	241
11	Biomass gasification in supercritical water: II. Effect of catalyst. International Journal of Hydrogen Energy, 2008, 33, 4520-4526.	3.8	190
12	Influence of Proteins on the Hydrothermal Gasification and Liquefaction of Biomass. 1. Comparison of Different Feedstocks. Industrial & Engineering Chemistry Research, 2005, 44, 3013-3020.	1.8	183
13	Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution. Bioresource Technology, 2018, 247, 370-379.	4.8	182
14	Biomass gasification in supercritical water: Part 1. Effect of the nature of biomass. Fuel, 2007, 86, 2410-2415.	3.4	153
15	Economic analysis of sewage sludge gasification in supercritical water for hydrogen production. Biomass and Bioenergy, 2008, 32, 1085-1096.	2.9	139
16	Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- A review. Biomass Conversion and Biorefinery, 2017, 7, 247-274.	2.9	136
17	Influence of the Carbonization Process on Activated Carbon Properties from Lignin and Lignin-Rich Biomasses. ACS Sustainable Chemistry and Engineering, 2017, 5, 8222-8233.	3.2	127
18	Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. Journal of Plant Nutrition and Soil Science, 2014, 177, 48-58.	1.1	125

ANDREA KRUSE

#	Article	IF	CITATIONS
19	Influence of the biomass components on the pore formation of activated carbon. Biomass and Bioenergy, 2017, 97, 53-64.	2.9	103
20	Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction. Algal Research, 2015, 9, 99-106.	2.4	101
21	Fate of Nitrogen during Hydrothermal Carbonization. Energy & amp; Fuels, 2016, 30, 8037-8042.	2.5	101
22	Modeling the Lignin Degradation Kinetics in an Ethanol/Formic Acid Solvolysis Approach. Part 1. Kinetic Model Development. Industrial & Engineering Chemistry Research, 2012, 51, 10595-10606.	1.8	93
23	Hydrothermal liquefaction of microalgae: Effect on the product yields of the addition of an organic solvent to separate the aqueous phase and the biocrude oil. Algal Research, 2015, 12, 206-212.	2.4	93
24	Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction. Bioresource Technology, 2014, 174, 256-265.	4.8	91
25	One stage olive mill waste streams valorisation via hydrothermal carbonisation. Waste Management, 2018, 80, 224-234.	3.7	87
26	The effect of different BrÃ,nsted acids on the hydrothermal conversion of fructose to HMF. Green Chemistry, 2018, 20, 2231-2241.	4.6	85
27	Suitability of hydrothermal liquefaction as a conversion route to produce biofuels from macroalgae. Algal Research, 2015, 11, 234-241.	2.4	84
28	Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts, 2020, 10, 437.	1.6	82
29	Gasification of sugarcane bagasse in supercritical water; evaluation of alkali catalysts for maximum hydrogen production. Journal of the Energy Institute, 2015, 88, 450-458.	2.7	81
30	Heterogeneous catalytic upgrading of biocrude oil produced by hydrothermal liquefaction of microalgae: State of the art and own experiments. Fuel Processing Technology, 2016, 148, 117-127.	3.7	80
31	Hydrothermal gasification of biomass: consecutive reactions to long-living intermediates. Energy and Environmental Science, 2010, 3, 136-143.	15.6	79
32	Experimental comparison of hydrothermal and vapothermal carbonization. Fuel Processing Technology, 2013, 115, 261-269.	3.7	79
33	Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Waste Management, 2019, 100, 138-150.	3.7	78
34	Pyrolysis vs. hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties. Journal of Analytical and Applied Pyrolysis, 2019, 140, 137-147.	2.6	77
35	Influence of Salts During Hydrothermal Biomass Gasification: The Role of the Catalysed Water-Gas Shift Reaction. Zeitschrift Fur Physikalische Chemie, 2005, 219, 341-366.	1.4	76
36	Hydrothermal Carbonization of Fructose: Growth Mechanism and Kinetic Model. ACS Sustainable Chemistry and Engineering, 2018, 6, 13877-13887.	3.2	75

#	Article	IF	CITATIONS
37	Hydrothermal biomass conversion: Quo vadis?. Journal of Supercritical Fluids, 2018, 134, 114-123.	1.6	74
38	Phosphorus recovered from digestate by hydrothermal processes with struvite crystallization and its potential as a fertilizer. Science of the Total Environment, 2020, 698, 134240.	3.9	69
39	Mechanisms and modelling of phosphorus solid–liquid transformation during the hydrothermal processing of swine manure. Green Chemistry, 2020, 22, 5628-5638.	4.6	68
40	Hydrothermal conversion of seaweeds in a batch autoclave. Journal of Supercritical Fluids, 2011, 58, 131-135.	1.6	67
41	Hydrochar amendment promotes microbial immobilization of mineral nitrogen. Journal of Plant Nutrition and Soil Science, 2014, 177, 59-67.	1.1	67
42	Experimental and thermodynamic studies of phosphate behavior during the hydrothermal carbonization of sewage sludge. Science of the Total Environment, 2019, 692, 147-156.	3.9	67
43	Evaluation of hydrothermal carbonization as a preliminary step for the production of functional materials from biogas digestate. Journal of Analytical and Applied Pyrolysis, 2017, 124, 461-474.	2.6	65
44	Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste. Bioresource Technology, 2020, 314, 123734.	4.8	65
45	Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer. Journal of Cleaner Production, 2020, 256, 120416.	4.6	64
46	Hydrothermal Liquefaction of Microalgae in a Continuous Stirred-Tank Reactor. Energy & Fuels, 2015, 29, 6422-6432.	2.5	63
47	Adsorption and recovery of phosphate from aqueous solution by the construction and demolition wastes sludge and its potential use as phosphate-based fertiliser. Journal of Environmental Chemical Engineering, 2020, 8, 103605.	3.3	62
48	Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw. Bioresource Technology, 2017, 244, 445-451.	4.8	60
49	Acidity and basicity of metal oxide catalysts for formaldehyde reaction in supercritical water at 673 K. Applied Catalysis A: General, 2003, 245, 333-341.	2.2	58
50	Wet and dry? Influence of hydrothermal carbonization on the pyrolysis of spent grains. Journal of Cleaner Production, 2020, 260, 121101.	4.6	58
51	Properties and Degradability of Hydrothermal Carbonization Products. Journal of Environmental Quality, 2013, 42, 1565-1573.	1.0	57
52	Biobased Functional Carbon Materials: Production, Characterization, and Applications—A Review. Materials, 2018, 11, 1568.	1.3	57
53	Structural Effects of Cellulose on Hydrolysis and Carbonization Behavior during Hydrothermal Treatment. ACS Omega, 2020, 5, 12210-12223.	1.6	57
54	Low temperature supercritical water gasification of biomass constituents: Glucose/phenol mixtures. Biomass and Bioenergy, 2015, 73, 84-94.	2.9	56

#	Article	IF	CITATIONS
55	Influence of phenol on glucose degradation during supercritical water gasification. Journal of Supercritical Fluids, 2010, 53, 42-47.	1.6	55
56	Properties of Hydrochar as Function of Feedstock, Reaction Conditions and Post-Treatment. Energies, 2018, 11, 674.	1.6	55
57	Oil formation from glucose with formic acid and cobalt catalyst in hot-compressed water. Carbohydrate Research, 2006, 341, 2891-2900.	1.1	52
58	Modeling the Lignin Degradation Kinetics in a Ethanol/Formic Acid Solvolysis Approach. Part 2. Validation and Transfer to Variable Conditions. Industrial & Engineering Chemistry Research, 2012, 51, 15053-15063.	1.8	50
59	Biomass gasification in supercritical and subcritical water: The effect of the reactor material. Chemical Engineering Journal, 2013, 228, 535-544.	6.6	50
60	Hydrogen from Methane and Supercritical Water. Angewandte Chemie - International Edition, 2003, 42, 909-911.	7.2	49
61	Catalytic hydrothermal conversion of cellulose over SnO2 and ZnO nanoparticle catalysts. Journal of Supercritical Fluids, 2011, 56, 179-185.	1.6	49
62	Kinetic Modelling of Hydrothermal Lignin Depolymerisation. Waste and Biomass Valorization, 2014, 5, 985-994.	1.8	49
63	Influence of salts on the subcritical water-gas shift reaction. Journal of Supercritical Fluids, 2012, 66, 207-214.	1.6	48
64	Supercritical water gasification of organic acids and alcohols: The effect of chain length. Journal of Supercritical Fluids, 2013, 74, 8-21.	1.6	47
65	Comparison of the influence of a Lewis acid AlCl3 and a BrÃ,nsted acid HCl on the organosolv pulping of beech wood. Green Chemistry, 2014, 16, 1569.	4.6	47
66	Microwave digestion-assisted HFO/biochar adsorption to recover phosphorus from swine manure. Science of the Total Environment, 2018, 621, 1512-1526.	3.9	46
67	Conductive Carbon Materials from the Hydrothermal Carbonization of Vineyard Residues for the Application in Electrochemical Double-Layer Capacitors (EDLCs) and Direct Carbon Fuel Cells (DCFCs). Materials, 2019, 12, 1703.	1.3	45
68	Sucrose Is a Promising Feedstock for the Synthesis of the Platform Chemical Hydroxymethylfurfural. Energies, 2018, 11, 645.	1.6	44
69	Kinetic study on the impact of acidity and acid concentration on the formation of 5-hydroxymethylfurfural (HMF), humins, and levulinic acid in the hydrothermal conversion of fructose. Biomass Conversion and Biorefinery, 2021, 11, 1155-1170.	2.9	42
70	Structural Changes in Microcrystalline Cellulose in Subcritical Water Treatment. Biomacromolecules, 2011, 12, 2544-2551.	2.6	40
71	Valorization of maize silage digestate from two-stage anaerobic digestion by hydrothermal carbonization. Energy Conversion and Management, 2020, 222, 113218.	4.4	39
72	Supercritical water gasification of hydrochar. Chemical Engineering Research and Design, 2014, 92, 1864-1875.	2.7	38

#	Article	IF	CITATIONS
73	Understanding the influence of biomass particle size and reaction medium on the formation pathways of hydrochar. Biomass Conversion and Biorefinery, 2020, 10, 1357-1380.	2.9	38
74	The use of dimethyl ether as an organic extraction solvent for biomass applications in future biorefineries: A user-oriented review. Fuel, 2019, 254, 115703.	3.4	37
75	Influence of RANEY Nickel on the Formation of Intermediates in the Degradation of Lignin. International Journal of Chemical Engineering, 2012, 2012, 1-8.	1.4	36
76	Study of the electrical conductivity of biobased carbonaceous powder materials under moderate pressure for the application as electrode materials in energy storage technologies. GCB Bioenergy, 2019, 11, 230-248.	2.5	36
77	Combustion Characteristics of Hydrochar and Pyrochar Derived from Digested Sewage Sludge. Energies, 2020, 13, 4164.	1.6	36
78	The swelling and dissolution of cellulose crystallites in subcritical and supercritical water. Cellulose, 2013, 20, 2731-2744.	2.4	35
79	Direct liquefaction of lignin and lignin rich biomasses by heterogenic catalytic hydrogenolysis. Biomass and Bioenergy, 2018, 111, 352-360.	2.9	35
80	Hydrothermal Carbonization: 2. Kinetics of Draff Conversion. Chemie-Ingenieur-Technik, 2012, 84, 509-512.	0.4	34
81	Initial and subsequent effects of hydrochar amendment on germination and nitrogen uptake of spring barley. Journal of Plant Nutrition and Soil Science, 2014, 177, 68-74.	1.1	34
82	Hydrothermal Carbonization Brewer's Spent Grains with the Focus on Improving the Degradation of the Feedstock. Energies, 2018, 11, 3226.	1.6	34
83	Towards the Properties of Different Biomass-Derived Proteins via Various Extraction Methods. Molecules, 2020, 25, 488.	1.7	34
84	Application of Algae as Cosubstrate To Enhance the Processability of Willow Wood for Continuous Hydrothermal Liquefaction. Industrial & Engineering Chemistry Research, 2017, 56, 4562-4571.	1.8	33
85	Supercritical Water Gasification of Biomass in a Ceramic Reactor: Long-Time Batch Experiments. Energies, 2017, 10, 1734.	1.6	33
86	Effect of protein during hydrothermal carbonization of brewer's spent grain. Bioresource Technology, 2019, 293, 122117.	4.8	32
87	Fate of Nitrogen, Phosphate, and Potassium during Hydrothermal Carbonization and the Potential for Nutrient Recovery. ACS Sustainable Chemistry and Engineering, 2020, 8, 15507-15516.	3.2	30
88	Feedstock-Dependent Phosphate Recovery in a Pilot-Scale Hydrothermal Liquefaction Bio-Crude Production. Energies, 2020, 13, 379.	1.6	30
89	The use of process simulation in supercritical fluids applications. Reaction Chemistry and Engineering, 2020, 5, 424-451.	1.9	30
90	Effect of residence time during hydrothermal carbonization of biogas digestate on the combustion characteristics of hydrochar and the biogas production of process water. Bioresource Technology, 2021, 333, 125110.	4.8	30

ANDREA KRUSE

#	Article	IF	CITATIONS
91	Hydrothermal conversion of biomass and different model compounds. Journal of Supercritical Fluids, 2012, 71, 80-85.	1.6	29
92	Hydrothermal Carbonization: 1. Influence of Lignin in Lignocelluloses. Chemie-Ingenieur-Technik, 2011, 83, 1734-1741.	0.4	28
93	Steam Explosion Conditions Highly Influence the Biogas Yield of Rice Straw. Molecules, 2019, 24, 3492.	1.7	28
94	Influence of the pH Value on the Hydrothermal Degradation of Fructose. ChemistryOpen, 2019, 8, 1121-1132.	0.9	27
95	Chemical Reactions in Supercritical Water - 1. Pyrolysis of tertButylbenzene. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 80-83.	0.9	25
96	Investigation of the textural and adsorption properties of activated carbon from HTC and pyrolysis carbonizates. Biomass Conversion and Biorefinery, 2018, 8, 317-328.	2.9	25
97	Pyrolysis Kinetics of Hydrochars Produced from Brewer's Spent Grains. Catalysts, 2019, 9, 625.	1.6	25
98	Toward an Intensified Process of Biomass-Derived Monomers: The Influence of 5-(Hydroxymethyl)furfural Byproducts on the Gold-Catalyzed Synthesis of 2,5-Furandicarboxylic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 11512-11521.	3.2	25
99	Hydrothermal carbonization of dry toilet residues as an added-value strategy – Investigation of process parameters. Journal of Environmental Management, 2019, 234, 537-545.	3.8	23
100	Hydrothermal Carbonization ofÂBiomass. , 2015, , 325-352.		22
101	Prediction of gaseous, liquid and solid mass yields from hydrothermal carbonization of biogas digestate by severity parameter. Biomass Conversion and Biorefinery, 2016, 6, 151-160.	2.9	20
102	Porous carbons derived from hydrothermally treated biogas digestate. Waste Management, 2020, 105, 170-179.	3.7	20
103	Hydrothermal disproportionation of formaldehyde at subcritical conditions. Journal of Supercritical Fluids, 2013, 73, 43-50.	1.6	18
104	Hydrothermal carbonization of wheat straw—prediction of product mass yields and degree of carbonization by severity parameter. Biomass Conversion and Biorefinery, 2016, 6, 347-354.	2.9	18
105	Isomerization of Glucose to Fructose in Hydrolysates from Lignocellulosic Biomass Using Hydrotalcite. Processes, 2020, 8, 644.	1.3	17
106	Hydrothermale Karbonisierung: 3. Kinetisches Modell. Chemie-Ingenieur-Technik, 2015, 87, 449-456.	0.4	16
107	Wastewater treatment – adsorption of organic micropollutants on activated HTC-carbon derived from sewage sludge. Water Science and Technology, 2016, 73, 607-616.	1.2	16
108	A biorefinery concept using forced chicory roots for the production of biogas, hydrochar, and platform chemicals. Biomass Conversion and Biorefinery, 2021, 11, 1453-1463.	2.9	16

#	Article	IF	CITATIONS
109	Extraction of sugars from forced chicory roots. Biomass Conversion and Biorefinery, 2019, 9, 699-708.	2.9	15
110	Prehydrolysis and organosolv delignification process for the recovery of hemicellulose and lignin from beech wood. Bioresource Technology Reports, 2020, 11, 100506.	1.5	15
111	Nitrogenâ€Containing Hydrochar: The Influence of Nitrogenâ€Containing Compounds on the Hydrochar Formation. ChemistryOpen, 2020, 9, 864-873.	0.9	15
112	Bio-Based Carbon Materials from Potato Waste as Electrode Materials in Supercapacitors. Energies, 2020, 13, 2406.	1.6	15
113	Processing Miscanthus to highâ€value chemicals: A technoâ€economic analysis based on process simulation. GCB Bioenergy, 2022, 14, 447-462.	2.5	14
114	Hydrothermal carbonization of Spirulina platensis and Chlorella vulgaris combined with protein isolation and struvite production. Bioresource Technology Reports, 2019, 6, 159-167.	1.5	13
115	Hydrothermal Conversion of Spent Sugar Beets into High-Value Platform Molecules. Molecules, 2020, 25, 3914.	1.7	13
116	Oxidation of hexanal to hexanoic acid in supercritical carbon dioxide. Journal of Supercritical Fluids, 2006, 39, 211-219.	1.6	12
117	Process design and economics of an aluminium chloride catalysed organosolv process. Biomass Conversion and Biorefinery, 2016, 6, 335-345.	2.9	12
118	Metal oxide-doped activated carbons from bakery waste and coffee grounds for application in supercapacitors. Materials Science for Energy Technologies, 2021, 4, 69-80.	1.0	12
119	Supercritical oxidation in water and carbon dioxide. Environmental Progress, 1998, 17, 234-239.	0.8	11
120	Effect of salt on the formation of 5-hydroxymethylfurfural from ketohexoses under aqueous conditions. Reaction Chemistry and Engineering, 2019, 4, 747-762.	1.9	11
121	Calculating the Reaction Order and Activation Energy for the Hydrothermal Carbonization of Fructose. Chemie-Ingenieur-Technik, 2020, 92, 692-700.	0.4	11
122	Kinetics of the AlCl ₃ catalyzed xylan hydrolysis during Methanosolv pulping of beech wood. RSC Advances, 2014, 4, 45118-45127.	1.7	10
123	Catalytic effect of aluminium chloride on the example of the conversion of sugar model compounds. Journal of Molecular Catalysis A, 2015, 402, 64-70.	4.8	10
124	Extraction of common microalgae by liquefied dimethyl ether: influence of species and pretreatment on oil yields and composition. Biomass Conversion and Biorefinery, 2023, 13, 141-158.	2.9	10
125	Is Steam Explosion a Promising Pretreatment for Acid Hydrolysis of Lignocellulosic Biomass?. Processes, 2020, 8, 1626.	1.3	9
126	Hydrothermal carbonization of fructose—effect of salts and reactor stirring on the growth and formation of carbon spheres. Biomass Conversion and Biorefinery, 2023, 13, 6281-6297.	2.9	9

#	Article	IF	CITATIONS
127	Acid-assisted extraction and hydrolysis of inulin from chicory roots to obtain fructose-enriched extracts. Biomass Conversion and Biorefinery, 2023, 13, 159-170.	2.9	8
128	The effect of using different acids to catalyze the prehydrolysis stage on the organosolv delignification of beech wood in two-stage process. Renewable Energy, 2020, 153, 1479-1487.	4.3	8
129	Valorization of Byproducts from Hydrothermal Liquefaction of Sewage Sludge and Manure: the Development of a Struvite-Producing Unit for Nutrient Recovery. Energy & Fuels, 2021, 35, 9408-9423.	2.5	8
130	Thermal treatment versus hydrothermal carbonization: How to synthesize <scp>nitrogenâ€enriched</scp> carbon materials for energy storage applications?. International Journal of Energy Research, 2022, 46, 1622-1636.	2.2	8
131	Challenges of Green Production of 2,5â€Furandicarboxylic Acid from Bioâ€Derived 5â€Hydroxymethylfurfural: Overcoming Deactivation by Concomitant Amino Acids. ChemSusChem, 2022, 15, .	3.6	8
132	Treatment of Biomass with Supercritical Water. Chemie-Ingenieur-Technik, 2011, 83, 1381-1389.	0.4	7
133	Hydrothermale Karbonisierung. 4. Thermische Eigenschaften der Produkte. Chemie-Ingenieur-Technik, 2015, 87, 1707-1712.	0.4	7
134	The current phosphate recycling situation in China and Germany: a comparative review. Frontiers of Agricultural Science and Engineering, 2019, 6, 403.	0.9	7
135	Activated Carbon from Corncobs Doped with RuO2 as Biobased Electrode Material. Electronic Materials, 2021, 2, 324-343.	0.9	5
136	Continuous synthesis of 5â€hydroxymethylfurfural from biomass in onâ€farm biorefinery. GCB Bioenergy, 2022, 14, 681-693.	2.5	5
137	Aluminiumchloridâ€katalysierter Organosolvâ€Aufschluss von Buchenholz. Chemie-Ingenieur-Technik, 2015, 87, 922-930.	0.4	4
138	Electricity generation in microbial fuel cell from wet torrefaction wastewater and locally developed corncob electrodes. Fuel Cells, 2021, 21, 182-194.	1.5	4
139	Chemical Reactions of C1 Compounds in Near-Critical and Supercritical Water. ChemInform, 2005, 36, no.	0.1	3
140	Technische Chemie 2010. Nachrichten Aus Der Chemie, 2011, 59, 335-345.	0.0	2
141	Physico-mechanical properties and thermal decomposition characteristics of pellets from <i>Jatropha curcas</i> L. residues as affected by water addition. Biofuels, 2021, 12, 1149-1156.	1.4	2
142	Hydrothermal Process for Extracting Phosphate from Animal Manure. , 2019, , 377-389.		2
143	Synthese von Hexansäre in überkritischem CO2. Chemie-Ingenieur-Technik, 2011, 83, 1399-1404.	0.4	1
144	Special Issue "Hydrothermal Technology in Biomass Utilization & Conversion Il― Energies, 2021, 14, 103.	1.6	1

#	Article	IF	CITATIONS
145	Conversion of Organic Streams in Supercritical Water. Materials Research Society Symposia Proceedings, 2005, 884, 1.	0.1	0
146	Chemical Reaction Modeling in Supercritical Fluids in Special Consideration of Reactions in Supercritical Water. , 0, , 165-191.		0