
Thomas Kastner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6297973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Groundwater depletion embedded in international food trade. Nature, 2017, 543, 700-704.	13.7	612
2	EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multiâ€Regional Inputâ€Output Tables. Journal of Industrial Ecology, 2018, 22, 502-515.	2.8	514
3	Global changes in diets and the consequences for land requirements for food. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6868-6872.	3.3	445
4	Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, 2018, 553, 73-76.	13.7	422
5	Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.	13.7	413
6	Agricultural and forestry trade drives large share of tropical deforestation emissions. Global Environmental Change, 2019, 56, 1-10.	3.6	289
7	Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology and Evolution, 2019, 3, 539-551.	3.4	283
8	Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental Sustainability, 2013, 5, 484-493.	3.1	279
9	Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nature Ecology and Evolution, 2019, 3, 628-637.	3.4	265
10	Environmental footprint family to address local to planetary sustainability and deliver on the SDCs. Science of the Total Environment, 2019, 693, 133642.	3.9	245
11	Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environmental Research Letters, 2015, 10, 125012.	2.2	242
12	Exploring the biophysical option space for feeding the world without deforestation. Nature Communications, 2016, 7, 11382.	5.8	221
13	Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecological Economics, 2011, 70, 1032-1040.	2.9	191
14	Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environmental Research Letters, 2019, 14, 055003.	2.2	188
15	Rapid growth in agricultural trade: effects on global area efficiency and the role of management. Environmental Research Letters, 2014, 9, 034015.	2.2	184
16	Land use biodiversity impacts embodied in international food trade. Global Environmental Change, 2016, 38, 195-204.	3.6	174
17	Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLoS Biology, 2018, 16, e2006841.	2.6	165
18	Interregional flows of ecosystem services: Concepts, typology and four cases. Ecosystem Services, 2018, 31, 231-241.	2.3	143

#	Article	IF	CITATIONS
19	Multiscale scenarios for nature futures. Nature Ecology and Evolution, 2017, 1, 1416-1419.	3.4	131
20	Bias in the attribution of forest carbon sinks. Nature Climate Change, 2013, 3, 854-856.	8.1	129
21	International wood trade and forest change: A global analysis. Global Environmental Change, 2011, 21, 947-956.	3.6	119
22	Agricultural trade and virtual land use: The case of China's crop trade. Land Use Policy, 2013, 33, 141-150.	2.5	119
23	Biomass turnover time in terrestrial ecosystems halved by land use. Nature Geoscience, 2016, 9, 674-678.	5.4	108
24	Cropland area embodied in international trade: Contradictory results from different approaches. Ecological Economics, 2014, 104, 140-144.	2.9	95
25	The role of trade in the greenhouse gas footprints of EU diets. Global Food Security, 2018, 19, 48-55.	4.0	89
26	Land use options for staying within the Planetary Boundaries – Synergies and trade-offs between global and local sustainability goals. Global Environmental Change, 2018, 49, 73-84.	3.6	88
27	Global inequalities in food consumption, cropland demand and land-use efficiency: A decomposition analysis. Global Environmental Change, 2020, 64, 102124.	3.6	79
28	Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Regional Environmental Change, 2017, 17, 1429-1441.	1.4	74
29	Exploring long-term trends in land use change and aboveground human appropriation of net primary production in nine European countries. Land Use Policy, 2015, 47, 426-438.	2.5	72
30	International inequality of environmental pressures: Decomposition and comparative analysis. Ecological Indicators, 2016, 62, 163-173.	2.6	70
31	Quantifying Spatial Variation in Ecosystem Services Demand: A Global Mapping Approach. Ecological Economics, 2017, 136, 14-29.	2.9	67
32	Global patterns of agricultural landâ€use intensity and vertebrate diversity. Diversity and Distributions, 2015, 21, 1308-1318.	1.9	65
33	Quantification of uncertainties in global grazing systems assessment. Global Biogeochemical Cycles, 2017, 31, 1089-1102.	1.9	62
34	Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation. Global Change Biology, 2018, 24, 2212-2228.	4.2	62
35	Bridging the research-implementation gap in IUCN Red List assessments. Trends in Ecology and Evolution, 2022, 37, 359-370.	4.2	58
36	Guidance for assessing interregional ecosystem service flows. Ecological Indicators, 2019, 105, 92-106.	2.6	57

#	Article	lF	CITATIONS
37	Trading Land: A Review of Approaches to Accounting for Upstream Land Requirements of Traded Products. Journal of Industrial Ecology, 2015, 19, 703-714.	2.8	55
38	Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006. Regional Environmental Change, 2016, 16, 1225-1238.	1.4	55
39	Long-term trajectories of the human appropriation of net primary production: Lessons from six national case studies. Ecological Economics, 2012, 77, 129-138.	2.9	54
40	Quantifying interregional flows of multiple ecosystem services – A case study for Germany. Global Environmental Change, 2020, 61, 102051.	3.6	54
41	Total global agricultural land footprint associated with UK food supply 1986–2011. Global Environmental Change, 2017, 43, 72-81.	3.6	53
42	Changes in land requirements for food in the Philippines: A historical analysis. Land Use Policy, 2010, 27, 853-863.	2.5	51
43	Trajectories in human domination of ecosystems: Human appropriation of net primary production in the Philippines during the 20th century. Ecological Economics, 2009, 69, 260-269.	2.9	44
44	Mapping and analysing cropland use intensity from a NPP perspective. Environmental Research Letters, 2016, 11, 014008.	2.2	43
45	Global cropland and greenhouse gas impacts of UK food supply are increasingly located overseas. Journal of the Royal Society Interface, 2016, 13, 20151001.	1.5	42
46	Agricultural intensification and land use change: assessing country-level induced intensification, land sparing and rebound effect. Environmental Research Letters, 2020, 15, 085007.	2.2	42
47	Global Human Appropriation of Net Primary Production for Biomass Consumption in the European Union, 1986–2007. Journal of Industrial Ecology, 2015, 19, 825-836.	2.8	41
48	Changing demand for food, livestock feed and biofuels in the past and in the near future. Livestock Science, 2011, 139, 3-10.	0.6	40
49	Trends in global virtual land trade in relation to agricultural products. Land Use Policy, 2020, 92, 104439.	2.5	40
50	Large greenhouse gas savings due to changes in the post-Soviet food systems. Environmental Research Letters, 2019, 14, 065009.	2.2	38
51	Global agricultural trade and land system sustainability: Implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth, 2021, 4, 1425-1443.	3.6	37
52	Development and testing scenarios for implementing land use and land cover changes during the Holocene in Earth system model experiments. Geoscientific Model Development, 2020, 13, 805-824.	1.3	36
53	The dynamics of beef trade between Brazil and Russia and their environmental implications. Global Food Security, 2016, 11, 84-92.	4.0	35
54	Linking national wood consumption with global biodiversity and ecosystem service losses. Science of the Total Environment, 2017, 586, 985-994.	3.9	35

#	Article	IF	CITATIONS
55	A crossâ€scale assessment of productivity–diversity relationships. Global Ecology and Biogeography, 2020, 29, 1940-1955.	2.7	35
56	Does agricultural trade reduce pressure on land ecosystems? Decomposing drivers of the embodied human appropriation of net primary production. Ecological Economics, 2021, 181, 106915.	2.9	34
57	United Kingdom's fruit and vegetable supply is increasingly dependent on imports from climate-vulnerable producing countries. Nature Food, 2020, 1, 705-712.	6.2	33
58	Telecoupled environmental impacts of current and alternative Western diets. Global Environmental Change, 2020, 62, 102066.	3.6	33
59	Land use intensification increasingly drives the spatiotemporal patterns of the global human appropriation of net primary production in the last century. Global Change Biology, 2022, 28, 307-322.	4.2	33
60	Biodiversity postâ€2020: Closing the gap between global targets and nationalâ€level implementation. Conservation Letters, 2022, 15, e12848.	2.8	32
61	Global patterns and trends of wood harvest and use between 1990 and 2010. Ecological Economics, 2015, 119, 326-337.	2.9	31
62	Inclusion, Transparency, and Enforcement: How the EU-Mercosur Trade Agreement Fails the Sustainability Test. One Earth, 2020, 3, 268-272.	3.6	31
63	Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity. Nature Communications, 2022, 13, 615.	5.8	29
64	Transformation scenarios towards a low-carbon bioeconomy in Austria. Energy Strategy Reviews, 2016, 13-14, 125-133.	3.3	28
65	European dietary patterns and their associated land use: Variation between and within countries. Food Policy, 2014, 44, 158-166.	2.8	27
66	The global cropland footprint of Denmark's food supply 2000–2013. Global Environmental Change, 2019, 58, 101978.	3.6	26
67	Linking country level food supply to global land and water use and biodiversity impacts: The case of Finland. Science of the Total Environment, 2017, 575, 33-40.	3.9	24
68	Adding country resolution to EXIOBASE: impacts on land use embodied in trade. Journal of Economic Structures, 2020, 9, 14.	0.6	23
69	Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000. Ecological Economics, 2012, 84, 66-73.	2.9	21
70	Forest harvest index: Accounting for global gross forest cover loss of wood production and an application of trade analysis. Global Ecology and Conservation, 2015, 4, 150-159.	1.0	21
71	Quantifying and attributing land use-induced carbon emissions to biomass consumption: A critical assessment of existing approaches. Journal of Environmental Management, 2021, 286, 112228.	3.8	20
72	Agriculture rivals biomes in predicting global species richness. Ecography, 2017, 40, 1118-1128.	2.1	16

#	Article	IF	CITATIONS
73	Tracing Austria's biomass consumption to source countries: A product-level comparison between bioenergy, food and material. Ecological Economics, 2021, 188, 107129.	2.9	16
74	Environmental and socioeconomic correlates of extinction risk in endemic species. Diversity and Distributions, 2022, 28, 53-64.	1.9	16
75	How Much Time Does a Farmer Spend to Produce My food? An International Comparison of the Impact of Diets and Mechanization. Resources, 2016, 5, 47.	1.6	15
76	Evaluating the impacts of wood production and trade on bird extinction risks. Ecological Indicators, 2016, 71, 368-376.	2.6	15
77	<scp>bRacatus</scp> : A method to estimate the accuracy and biogeographical status of georeferenced biological data. Methods in Ecology and Evolution, 2021, 12, 1609-1619.	2.2	13
78	Livestock Grazing, the Neglected Land Use. , 2016, , 295-313.		12
79	Beyond Inputs and Outputs: Opening the Black-Box of Land-Use Intensity. , 2016, , 93-124.		12
80	Telecoupling through tomato trade: what consumers do not know about the tomato on their plate. Global Sustainability, 2020, 3, .	1.6	12
81	Archetype models upscale understanding of natural pest control response to landâ€use change. Ecological Applications, 2022, 32, .	1.8	11
82	Pathways to "5-a-day― modeling the health impacts and environmental footprints of meeting the target for fruit and vegetable intake in the United Kingdom. American Journal of Clinical Nutrition, 2021, 114, 530-539.	2.2	9
83	Agricultural trade and its impacts on cropland use and the global loss of species habitat. Sustainability Science, 2022, 17, 2363-2377.	2.5	9
84	Climate and socioâ€economic factors explain differences between observed and expected naturalization patterns of European plants around the world. Global Ecology and Biogeography, 2021, 30, 1514-1531.	2.7	8
85	Assessing the contribution of mobility in the European Union to rubber expansion. Ambio, 2022, 51, 770-783.	2.8	8
86	Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species. Diversity and Distributions, 2021, 27, 2063-2076.	1.9	7
87	A Forest Transition: Austrian Carbon Budgets 1830–2010. , 2016, , 417-431.		5
88	Conservation Telecouplings. , 2019, , 281-302.		5
89	Trading Forests: Quantifying the Contribution of Global Commodity Markets to Emissions from Tropical Deforestation. SSRN Electronic Journal, 0, , .	0.4	4
90	Changes in Climate Vulnerability and Projected Water Stress of The Gambia's Food Supply Between 1988 and 2018: Trading With Trade-Offs. Frontiers in Public Health, 2022, 10, .	1.3	3

#	Article	IF	CITATIONS
91	Toolbox: Flow Analysis—Social Metabolism in the Analysis of Telecoupling. , 2019, , 139-148.		2
92	Human Appropriation of Net Primary Production, Stocks and Flows of Carbon, and Biodiversity. , 2013, , 313-331.		2
93	The Philippines 1910–2003: A Century of Transitions. , 2016, , 447-458.		1
94	Systemic Feedbacks in Global Land Use. , 2016, , 315-334.		1
95	How Far Does the European Union Reach? Analyzing Embodied HANPP. , 2016, , 349-360.		1
96	The micronutrient content of the European Union's agricultural trade. Ecological Economics, 2021, 188, 107118.	2.9	1
97	LUCC in the Philippines over the 20th century: Links to population growth, food demand and trade. IOP Conference Series: Earth and Environmental Science, 2009, 6, 342025.	0.2	0
98	Reply to: Soils need to be considered when assessing the impacts of land-use change on carbon sequestration. Nature Ecology and Evolution, 2019, 3, 1643-1644.	3.4	0