Guillermo Toriz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6297830/publications.pdf

Version: 2024-02-01

33	1,241	19	33
papers	citations	h-index	g-index
33	33	33	1975
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Flexible oxygen barrier films from spruce xylan. Carbohydrate Polymers, 2012, 87, 2381-2387.	10.2	112
2	Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40878-40886.	8.0	106
3	In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. Materials Science and Engineering C, 2017, 75, 445-453.	7.3	84
4	Regular Motifs in Xylan Modulate Molecular Flexibility and Interactions with Cellulose Surfaces. Plant Physiology, 2017, 175, 1579-1592.	4.8	79
5	Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 156-161.	3.8	76
6	A GH115 \hat{l} ±-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan. Biotechnology for Biofuels, 2016, 9, 2.	6.2	72
7	Corncob arabinoxylan for new materials. Carbohydrate Polymers, 2014, 102, 12-20.	10.2	71
8	Bacterial nanocelluloseâ€reinforced arabinoxylan films. Journal of Applied Polymer Science, 2011, 122, 1030-1039.	2.6	68
9	Role of $(1,3)(1,4)$ - \hat{l}^2 -Glucan in Cell Walls: Interaction with Cellulose. Biomacromolecules, 2014, 15, 1727-1736.	5.4	63
10	Assembly of Debranched Xylan from Solution and on Nanocellulosic Surfaces. Biomacromolecules, 2014, 15, 924-930.	5.4	62
11	In situ forming spruce xylan-based hydrogel for cell immobilization. Carbohydrate Polymers, 2014, 102, 862-868.	10.2	59
12	In Vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Novel Bacterial Nanocellulose Bioink. ACS Biomaterials Science and Engineering, 2019, 5, 2482-2490.	5.2	55
13	Fast and highly efficient acetylation of xylans in ionic liquid systems. Cellulose, 2013, 20, 2813-2824.	4.9	35
14	Materials from trees assembled by 3D printing $\hat{a} \in \text{``Wood tissue beyond nature limits. Applied Materials Today, 2019, 15, 280-285.}$	4.3	35
15	Rheological characterization of new thermosensitive hydrogels formed by chitosan, glycerophosphate, and phosphorylated \hat{l}^2 -cyclodextrin. Carbohydrate Polymers, 2018, 201, 471-481.	10.2	29
16	Effect of xylan content on mechanical properties in regenerated cellulose/xylan blend films from ionic liquid. Cellulose, 2015, 22, 1943-1953.	4.9	28
17	Moisture induced plasticity of amorphous cellulose films from ionic liquid. Polymer, 2013, 54, 6555-6560.	3.8	27
18	Highly Hydrophobic Wood Surfaces Prepared by Treatment With Atmospheric Pressure Dielectric Barrier Discharges. Journal of Adhesion Science and Technology, 2008, 22, 2059-2078.	2.6	23

#	Article	IF	CITATIONS
19	Tailormade Polysaccharides with Defined Branching Patterns: Enzymatic Polymerization of Arabinoxylan Oligosaccharides. Angewandte Chemie - International Edition, 2018, 57, 11987-11992.	13.8	20
20	The dynamic development of exclusion zones on cellulosic surfaces. Cellulose, 2014, 21, 1143-1148.	4.9	18
21	Biochemical and Structural Characterization of a Five-domain GH115 α-Glucuronidase from the Marine Bacterium Saccharophagus degradans 2-40T. Journal of Biological Chemistry, 2016, 291, 14120-14133.	3.4	18
22	Spruce xylan/HEMA-SBA15 hybrid hydrogels as a potential scaffold for fibroblast growth and attachment. Carbohydrate Polymers, 2018, 201, 490-499.	10.2	17
23	Experimental and Theoretical Evaluation of the Solubility/Insolubility of Spruce Xylan (Arabino) Tj ETQq1 1 0.784	314 rgBT /	Overlock 10
24	Post-grafting and characterization of mesoporous silica MCM-41 with a thermoresponsive polymer TEVS/NIPAAm/ \hat{l}^2 -cyclodextrin. Materials Letters, 2017, 196, 26-29.	2.6	12
25	Interfacial water and its potential role in the function of sericin against biofouling. Biofouling, 2019, 35, 732-741.	2.2	11
26	Adhesion between Cellulosic Fibers in Paper. Journal of Adhesion Science and Technology, 2011, 25, 597-614.	2.6	8
27	Controlled molecular reorientation enables strong cellulose fibers regenerated from ionic liquid solutions. Polymer, 2015, 75, 119-124.	3.8	8
28	Structural characterization of the family GH115 \hat{l}_{\pm} -glucuronidase from Amphibacillus xylanus yields insight into its coordinated action with \hat{l}_{\pm} -arabinofuranosidases. New Biotechnology, 2021, 62, 49-56.	4.4	8
29	Coacervated liposoluble fructan-based host–guest microspheres as unique drug delivery materials. RSC Advances, 2015, 5, 67759-67766.	3.6	6
30	Bored Coffee Beans for Production of Hyaluronic Acid by Streptococcus zooepidemicus. Fermentation, 2021, 7, 121.	3.0	5
31	Synthesis of core-shell hybrid nanoparticles with pH responsive core and silica shell and their surface characterization. Materials Letters, 2020, 280, 128550.	2.6	4
32	Synthesis and characterization of mesoporous silica-g-poly(hydroxyethylmethacrylate) nanohybrid particles as a drug delivery system. Materials Chemistry and Physics, 2022, 283, 126048.	4.0	4
33	Effects of Extractives on the Surface Chemistry and Wettability of High Temperature Chemithermomechanical Pulps. Nordic Pulp and Paper Research Journal, 2004, 19, 53-58.	0.7	2