Ken-ichi Izutsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6297436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation of N-nitrosodimethylamine from drug substances using solid-phase extraction-liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2022, 210, 114561.	2.8	14
2	Effect of hydrophobic moment on membrane interaction and cell penetration of apolipoprotein E-derived arginine-rich amphipathic α-helical peptides. Scientific Reports, 2022, 12, 4959.	3.3	15
3	Current Status and Challenges of Analytical Methods for Evaluation of Size and Surface Modification of Nanoparticle-Based Drug Formulations. AAPS PharmSciTech, 2022, 23, .	3.3	25
4	In Vitro Sensitivity Analysis of the Gastrointestinal Dissolution Profile of Weakly Basic Drugs in the Stomach-to-Intestine Fluid Changing System: Explanation for Variable Plasma Exposure after Oral Administration. Molecular Pharmaceutics, 2021, 18, 1711-1719.	4.6	8
5	Visualizing the spatial localization of ciclesonide and its metabolites in rat lungs after inhalation of 1-μm aerosol of ciclesonide by desorption electrospray ionization-time of flight mass spectrometry imaging. International Journal of Pharmaceutics, 2021, 595, 120241.	5.2	11
6	Simple bicarbonate buffer system for dissolution testing: Floating lid method and its application to colonic drug delivery system. Journal of Drug Delivery Science and Technology, 2021, 63, 102447.	3.0	7
7	Discrimination of ranitidine hydrochloride crystals using X-ray micro-computed tomography for the evaluation of three-dimensional spatial distribution in solid dosage forms. International Journal of Pharmaceutics, 2021, 605, 120834.	5.2	8
8	Bioequivalence of Oral Drug Products in the Healthy and Special Populations: Assessment and Prediction Using a Newly Developed In Vitro System "BE Checker― Pharmaceutics, 2021, 13, 1136.	4.5	6
9	Altered Media Flow and Tablet Position as Factors of How Air Bubbles Affect Dissolution of Disintegrating and Non-disintegrating Tablets Using a USP 4 Flow-Through Cell Apparatus. AAPS PharmSciTech, 2021, 22, 227.	3.3	2
10	<i>N</i> -Nitrosodimethylamine (NDMA) Formation from Ranitidine Impurities: Possible Root Causes of the Presence of NDMA in Ranitidine Hydrochloride. Chemical and Pharmaceutical Bulletin, 2021, 69, 872-876.	1.3	12
11	Quantification of a cocrystal and its dissociated compounds in solid dosage form using transmission Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2020, 177, 112886.	2.8	9
12	Approaches to supply bioequivalent oral solid pharmaceutical formulations through the lifecycles of products: Four-media dissolution monitoring program in Japan. Journal of Drug Delivery Science and Technology, 2020, 56, 101378.	3.0	1
13	Detection of material-derived differences in the stiffness of egg yolk phosphatidylcholine-containing liposomes using atomic force microscopy. Chemistry and Physics of Lipids, 2020, 233, 104992.	3.2	4
14	Physicochemical Characterization of Liposomes That Mimic the Lipid Composition of Exosomes for Effective Intracellular Trafficking. Langmuir, 2020, 36, 12735-12744.	3.5	30
15	Relationship Between Geometric and Aerodynamic Particle Size Distributions in the Formulation of Solution and Suspension Metered-Dose Inhalers. AAPS PharmSciTech, 2020, 21, 158.	3.3	3
16	Instrument-Dependent Factors Affecting the Precision in the Atomic Force Microscopy Stiffness Measurement of Nanoscale Liposomes. Chemical and Pharmaceutical Bulletin, 2020, 68, 473-478.	1.3	4
17	Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183403.	2.6	16
18	Morphological Analysis of Spherical Adsorptive Carbon Granules Using Three-Dimensional X-Ray Micro-computed Tomography. Chemical and Pharmaceutical Bulletin, 2020, 68, 179-180.	1.3	0

#	Article	IF	CITATIONS
19	Temperature-Dependent Formation of <i>N</i> -Nitrosodimethylamine during the Storage of Ranitidine Reagent Powders and Tablets. Chemical and Pharmaceutical Bulletin, 2020, 68, 1008-1012.	1.3	22
20	Utilization of Diluted Compendial Media as Dissolution Test Solutions with Low Buffer Capacity for the Investigation of Dissolution Rate of Highly Soluble Immediate Release Drug Products. Chemical and Pharmaceutical Bulletin, 2020, 68, 664-670.	1.3	5
21	Effect of Complex Coacervation with Hyaluronic Acid on Protein Transition in a Subcutaneous Injection Site Model System. Chemical and Pharmaceutical Bulletin, 2020, 68, 1109-1112.	1.3	1
22	Improved Atomic Force Microscopy Stiffness Measurements of Nanoscale Liposomes by Cantilever Tip Shape Evaluation. Analytical Chemistry, 2019, 91, 10432-10440.	6.5	15
23	Rapid and efficient high-performance liquid chromatography analysis of N-nitrosodimethylamine impurity in valsartan drug substance and its products. Scientific Reports, 2019, 9, 11852.	3.3	36
24	Effect of surface charge on the size-dependent cellular internalization of liposomes. Chemistry and Physics of Lipids, 2019, 224, 104726.	3.2	26
25	Analysis of an Impurity, <i>N</i> -Nitrosodimethylamine, in Valsartan Drug Substances and Associated Products Using GC-MS. Biological and Pharmaceutical Bulletin, 2019, 42, 547-551.	1.4	17
26	Detailed Morphological Characterization of Nanocrystalline Active Ingredients in Solid Oral Dosage Forms Using Atomic Force Microscopy. AAPS PharmSciTech, 2019, 20, 70.	3.3	1
27	Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations. Advances in Experimental Medicine and Biology, 2018, 1081, 371-383.	1.6	53
28	Comparison of Aerodynamic Particle Size Distribution Between a Next Generation Impactor and a Cascade Impactor at a Range of Flow Rates. AAPS PharmSciTech, 2017, 18, 646-653.	3.3	16
29	Comparison of Dissolution Similarity Assessment Methods for Products with Large Variations: <i>f</i> ₂ Statistics and Model-Independent Multivariate Confidence Region Procedure for Dissolution Profiles of Multiple Oral Products. Biological and Pharmaceutical Bulletin, 2017, 40, 722-725.	1.4	11
30	Use of bicarbonate buffer systems for dissolution characterization of enteric-coated proton pump inhibitor tablets. Journal of Pharmacy and Pharmacology, 2016, 68, 467-474.	2.4	24
31	Scientific and regulatory approaches to confirm quality and improve patient perceptions of generic drug products in Japan. AAPS Open, 2016, 2, .	1.3	10
32	Characterization and Quality Control of Pharmaceutical Cocrystals. Chemical and Pharmaceutical Bulletin, 2016, 64, 1421-1430.	1.3	46
33	Amorphous–Amorphous Phase Separation of Freeze-Concentrated Protein and Amino Acid Excipients for Lyophilized Formulations. Chemical and Pharmaceutical Bulletin, 2016, 64, 1674-1680.	1.3	7
34	Effect of co-solutes and process variables on crystallinity and the crystal form of freeze-dried myo -inositol. International Journal of Pharmaceutics, 2016, 509, 368-374.	5.2	3
35	Effects of Pump Pulsation on Hydrodynamic Properties and Dissolution Profiles in Flow-Through Dissolution Systems (USP 4). Pharmaceutical Research, 2016, 33, 1327-1336.	3.5	3
36	Physical Characterization of <i>meso</i> -Erythritol as a Crystalline Bulking Agent for Freeze-Dried Formulations. Chemical and Pharmaceutical Bulletin, 2015, 63, 311-317.	1.3	4

#	Article	IF	CITATIONS
37	Particle Image Velocimetry Evaluation of Fluid Flow Profiles in USP 4 Flow-Through Dissolution Cells. Pharmaceutical Research, 2015, 32, 2950-2959.	3.5	7
38	Interaction kinetics of serum proteins with liposomes and their effect on phospholipase-induced liposomal drug release. International Journal of Pharmaceutics, 2015, 495, 827-839.	5.2	17
39	Investigation of factors affecting <i>in vitro</i> doxorubicin release from PEGylated liposomal doxorubicin for the development of <i>in vitro</i> release testing conditions. Drug Development and Industrial Pharmacy, 2015, 41, 1376-1386.	2.0	29
40	Miscibility as a Factor for Component Crystallization in Multisolute Frozen Solutions. Journal of Pharmaceutical Sciences, 2014, 103, 2139-2146.	3.3	3
41	Stabilization of Therapeutic Proteins in Aqueous Solutions and Freeze-Dried Solids: An Overview. Methods in Molecular Biology, 2014, 1129, 435-441.	0.9	6
42	Studying the Morphology of Lyophilized Protein Solids Using X-ray Micro-CT: Effect of Post-freeze Annealing and Controlled Nucleation. AAPS PharmSciTech, 2014, 15, 1181-1188.	3.3	21
43	Next Generation Drying Technologies for Pharmaceutical Applications. Journal of Pharmaceutical Sciences, 2014, 103, 2673-2695.	3.3	162
44	Effects of Formulation and Process Factors on the Crystal Structure of Freeze-Dried Myo-Inositol. Journal of Pharmaceutical Sciences, 2014, 103, 2347-2355.	3.3	6
45	Impact of heat treatment on miscibility of proteins and disaccharides in frozen solutions. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 177-183.	4.3	10
46	Component Crystallization and Physical Collapse during Freeze-Drying of <small>L</small> -Arginine–Citric Acid Mixtures. Chemical and Pharmaceutical Bulletin, 2012, 60, 1176-1181.	1.3	7
47	Stabilization of Liposomes in Frozen Solutions Through Control of Osmotic Flow and Internal Solution Freezing by Trehalose. Journal of Pharmaceutical Sciences, 2011, 100, 2935-2944.	3.3	21
48	Impact of Heat Treatment on the Physical Properties of Noncrystalline Multisolute Systems Concentrated in Frozen Aqueous Solutions. Journal of Pharmaceutical Sciences, 2011, 100, 5244-5253.	3.3	6
49	Excipient crystallinity and its protein-structure-stabilizing effect during freeze-drying. Journal of Pharmacy and Pharmacology, 2010, 54, 1033-1039.	2.4	76
50	Effects of Solute Miscibility on the Micro- and Macroscopic Structural Integrity of Freeze-Dried Solids. Journal of Pharmaceutical Sciences, 2010, 99, 4710-4719.	3.3	7
51	Freeze-drying of proteins with glass-forming oligosaccharide-derived sugar alcohols. International Journal of Pharmaceutics, 2010, 389, 107-113.	5.2	61
52	Dimer–tetramer assembly of nucleoside diphosphate kinase from moderately halophilic bacterium Chromohalobacter salexigens DSM3043: Both residues 134 and 136 are critical for the tetramer assembly. Enzyme and Microbial Technology, 2010, 46, 129-135.	3.2	7
53	Near-Infrared Analysis of Hydrogen-Bonding in Glass- and Rubber-State Amorphous Saccharide Solids. AAPS PharmSciTech, 2009, 10, 524-529.	3.3	19
54	Stabilization of Protein Structure in Freeze-Dried Amorphous Organic Acid Buffer Salts. Chemical and Pharmaceutical Bulletin, 2009, 57, 1231-1236.	1.3	17

#	Article	IF	CITATIONS
55	Freeze-Drying of Proteins in Glass Solids Formed by Basic Amino Acids and Dicarboxylic Acids. Chemical and Pharmaceutical Bulletin, 2009, 57, 43-48.	1.3	46
56	Glass-State Amorphous Salt Solids Formed by Freeze-Drying of Amines and Hydroxy Carboxylic Acids: Effect of Hydrogen-Bonding and Electrostatic Interactions. Chemical and Pharmaceutical Bulletin, 2008, 56, 821-826.	1.3	21
57	Inhibition of Mannitol Crystallization in Frozen Solutions by Sodium Phosphates and Citrates. Chemical and Pharmaceutical Bulletin, 2007, 55, 565-570.	1.3	20
58	A single Gly114Arg mutation stabilizes the hexameric subunit assembly and changes the substrate specificity of haloâ€archaeal nucleoside diphosphate kinase. FEBS Letters, 2007, 581, 4073-4079.	2.8	15
59	Dimeric structure of nucleoside diphosphate kinase from moderately halophilic bacterium: contrast to the tetramericPseudomonascounterpart. FEMS Microbiology Letters, 2007, 268, 52-58.	1.8	19
60	Near-infrared analysis of protein secondary structure in aqueous solutions and freeze-dried solids. Journal of Pharmaceutical Sciences, 2006, 95, 781-789.	3.3	59
61	Effect of inorganic salts on crystallization of poly(ethylene glycol) in frozen solutions. International Journal of Pharmaceutics, 2005, 288, 101-108.	5.2	16
62	Effect of counterions on the physical properties of l-arginine in frozen solutions and freeze-dried solids. International Journal of Pharmaceutics, 2005, 301, 161-169.	5.2	72
63	Effect of Polymer Size and Cosolutes on Phase Separation of Poly(Vinylpyrrolidone) (PVP) and Dextran in Frozen Solutions. Journal of Pharmaceutical Sciences, 2005, 94, 709-717.	3.3	19
64	Stabilization of Therapeutic Proteins by Chemical and Physical Methods. , 2005, 308, 287-292.		3
65	Effects of sodium tetraborate and boric acid on nonisothermal mannitol crystallization in frozen solutions and freeze-dried solids. International Journal of Pharmaceutics, 2004, 273, 85-93.	5.2	29
66	Protection of Protein Secondary Structure by Saccharides of Different Molecular Weights during Freeze-Drying. Chemical and Pharmaceutical Bulletin, 2004, 52, 199-203.	1.3	23
67	Freezing- and Drying-Induced Perturbations of Protein Structure and Mechanisms of Protein Protection by Stabilizing Additives. Drugs and the Pharmaceutical Sciences, 2004, , .	0.1	1
68	Abnormal Dissolutions of Chlorpromazine Hydrochloride Tablets in Water by Paddle Method under a High Agitation Condition. Chemical and Pharmaceutical Bulletin, 2003, 51, 1021-1024.	1.3	0
69	Effect of Sodium Tetraborate (Borax) on the Thermal Properties of Frozen Aqueous Sugar and Polyol Solutions. Chemical and Pharmaceutical Bulletin, 2003, 51, 663-666.	1.3	11
70	Maintenance of Quaternary Structure in the Frozen State Stabilizes Lactate Dehydrogenase during Freeze–Drying. Archives of Biochemistry and Biophysics, 2001, 390, 35-41.	3.0	103
71	Phase separation of polyelectrolytes and non-ionic polymers in frozen solutions. Physical Chemistry Chemical Physics, 2000, 2, 123-127.	2.8	19
72	Freeze-concentration separates proteins and polymer excipients into different amorphous phases. Pharmaceutical Research, 2000, 17, 1316-1322.	3.5	59

#	Article	IF	CITATIONS
73	Effect of salts and sugars on phase separation of polyvinylpyrrolidone[ndash]dextran solutions induced by freeze-concentration. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 411-417.	1.7	31
74	Effects of sugars and polymers on crystallization of poly(ethylene glycol) in frozen solutions: phase separation between incompatible polymers. Pharmaceutical Research, 1996, 13, 1393-1400.	3.5	74
75	Effect of Cryoprotectants on the Eutectic Crystallization of NaCl in Frozen Solutions Studied by Differential Scanning Calorimetry (DSC) and Broad-Line Pulsed NMR Chemical and Pharmaceutical Bulletin, 1995, 43, 1804-1806.	1.3	32
76	Increased stabilizing effects of amphiphilic excipients on freeze-drying of lactate dehydrogenase (LDH) by dispersion into sugar matrices. Pharmaceutical Research, 1995, 12, 838-843.	3.5	51
77	Application of Accelerated Testing to Shelf-life Prediction of Commercial Protein Preparations. Journal of Pharmaceutical Sciences, 1994, 83, 454-456.	3.3	24
78	Stabilizing effect of amphiphilic excipients on the freeze-thawing and freeze-drying of lactate dehydrogenase. Biotechnology and Bioengineering, 1994, 43, 1102-1107.	3.3	55
79	Physical stability and protein stability of freeze-dried cakes during storage at elevated temperatures. Pharmaceutical Research, 1994, 11, 995-999.	3.5	51
80	ls stability prediction possible for protein drugs? Denaturation kinetics of beta-galactosidase in solution. Pharmaceutical Research, 1994, 11, 1721-1725.	3.5	35
81	Effect of Mannitol Crystallinity on the Stabilization of Enzymes during Freeze-Drying Chemical and Pharmaceutical Bulletin, 1994, 42, 5-8.	1.3	147
82	The effect of salts on the stability of beta-galactosidase in aqueous solution, as related to the water mobility. Pharmaceutical Research, 1993, 10, 1484-1487.	3.5	15
83	Stability of beta-galactosidase, a model protein drug, is related to water mobility as measured by 170 nuclear magnetic resonance (NMR). Pharmaceutical Research, 1993, 10, 103-108.	3.5	30
84	Aggregates formed during storage of beta-galactosidase in solution and in the freeze-dried state. Pharmaceutical Research, 1993, 10, 687-691.	3.5	28
85	Decreased protein-stabilizing effects of cryoprotectants due to crystallization. Pharmaceutical Research, 1993, 10, 1232-1237.	3.5	150
86	Inactivation kinetics of enzyme pharmaceuticals in aqueous solution. Pharmaceutical Research, 1991, 08, 480-484.	3.5	33
87	Protein denaturation in dosage forms measured by differential scanning calorimetry Chemical and Pharmaceutical Bulletin, 1990, 38, 800-803.	1.3	17