
Matthew H Langholtz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6297306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nthâ€plant supply: corn stover supplies and costs in a fleet of biorefineries. Biofuels, Bioproducts and Biorefining, 2022, 16, 204-218.	1.9	Ο
2	Ecosystem service benefits to water users from perennial biomass production. Science of the Total Environment, 2022, 834, 155255.	3.9	4
3	Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. Science of the Total Environment, 2021, 758, 143602.	3.9	23
4	Supply analysis of preferential market incentive for energy crops. Biofuels, Bioproducts and Biorefining, 2021, 15, 736-748.	1.9	8
5	The nth-plant scenario for blended feedstock conversion and preprocessing nationwide: Biorefineries and depots. Applied Energy, 2021, 294, 116946.	5.1	9
6	Comparison of Long-Term Bioenergy with Carbon Capture and Storage to Reference Power Generation Technologies Using CO2 Avoidance Cost in the U.S Energies, 2021, 14, 7026.	1.6	3
7	Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States. Biomass and Bioenergy, 2020, 143, 105807.	2.9	2
8	Perennials in Flood-Prone Areas of Agricultural Landscapes: A Climate Adaptation Strategy. BioScience, 2020, 70, 278-280.	2.2	7
9	The Economic Accessibility of CO2 Sequestration through Bioenergy with Carbon Capture and Storage (BECCS) in the US. Land, 2020, 9, 299.	1.2	11
10	Assessment of the feedstock supply for siting single―and multipleâ€feedstock biorefineries in the USA and identification of prevalent feedstocks. Biofuels, Bioproducts and Biorefining, 2020, 14, 578-593.	1.9	21
11	Cost and profit impacts of modifying stover harvest operations to improve feedstock quality. Biofuels, Bioproducts and Biorefining, 2019, 13, 1098-1105.	1.9	2
12	Modeling spatial dependence and economic hotspots in landowners' willingness to supply bioenergy crops in the northeastern United States. GCB Bioenergy, 2019, 11, 1086-1097.	2.5	10
13	Economic comparative advantage of willow biomass in the Northeast USA. Biofuels, Bioproducts and Biorefining, 2019, 13, 74-85.	1.9	10
14	A sustainability framework for assessing studies about marginal lands for planting perennial energy crops. Biofuels, Bioproducts and Biorefining, 2019, 13, 228-240.	1.9	17
15	The impact of alternative land and yield assumptions in herbaceous biomass supply modeling: oneâ€sizeâ€fitsâ€all resource assessment?. Biofuels, Bioproducts and Biorefining, 2019, 13, 120-128.	1.9	3
16	Investigation of biochemical biorefinery sizing and environmental sustainability impacts for conventional bale system and advanced uniform biomass logistics designs. Biofuels, Bioproducts and Biorefining, 2018, 12, 325-325.	1.9	1
17	Improving water quality in the Chesapeake Bay using payments for ecosystem services for perennial biomass for bioenergy and biofuel production. Biomass and Bioenergy, 2018, 114, 132-142.	2.9	28
18	Socioeconomic indicators for sustainable design and commercial development of algal biofuel systems. GCB Bioenergy, 2017, 9, 1005-1023.	2.5	37

MATTHEW H LANGHOLTZ

#	Article	IF	CITATIONS
19	2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy (Executive) Tj ETQq1 1 0.784	-314 rgBT 0.5	/Oygrlock 10
20	Simulated impact of the renewable fuels standard on US Conservation Reserve Program enrollment and conversion. GCB Bioenergy, 2016, 8, 245-256.	2.5	15
21	Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S Renewable Energy, 2016, 93, 201-214.	4.3	21
22	2013 feedstock supply and price projections and sensitivity analysis. Biofuels, Bioproducts and Biorefining, 2014, 8, 594-607.	1.9	9
23	Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preâ€processing supply system designs. Biofuels, Bioproducts and Biorefining, 2014, 8, 545-567.	1.9	40
24	Climate risk management for the U.S. cellulosic biofuels supply chain. Climate Risk Management, 2014, 3, 96-115.	1.5	36
25	The updated billion-ton resource assessment. Biomass and Bioenergy, 2014, 70, 149-164.	2.9	36
26	Increasing drought under global warming in observations and models. Nature Climate Change, 2013, 3, 52-58.	8.1	3,342
27	Indicators for assessing socioeconomic sustainability of bioenergy systems: A short list of practical measures. Ecological Indicators, 2013, 26, 87-102.	2.6	166
28	Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program. Environmental Research Letters, 2013, 8, 025016.	2.2	23
29	Investigation of biochemical biorefinery sizing and environmental sustainability impacts for conventional bale system and advanced uniform biomass logistics designs. Biofuels, Bioproducts and Biorefining, 2013, 7, 282-302.	1.9	73
30	Environmental and Socioeconomic Indicators for Bioenergy Sustainability as Applied toEucalyptus. International Journal of Forestry Research, 2013, 2013, 1-10.	0.2	5
31	The Economic Availability of Woody Biomass Feedstocks in the Northeast. , 2013, , 37-59.		0
32	Perception of climate change. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2415-23.	3.3	1,056
33	Agricultural Reference Index for Drought (ARID). Agronomy Journal, 2012, 104, 287-300.	0.9	103
34	Participatory design of agricultural decision support tools: taking account of the use situations. Agronomy for Sustainable Development, 2012, 32, 899-910.	2.2	83
35	The art of the science: climate forecasts for wildfire management in the southeastern United States. Climatic Change, 2012, 113, 1113-1121.	1.7	4
36	Price projections of feedstocks for biofuels and biopower in the U.S Energy Policy, 2012, 41, 484-493.	4.2	41

MATTHEW H LANGHOLTZ

#	Article	IF	CITATIONS
37	Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 45-65.	3.6	2,354
38	Enhancement of Switchgrass (Panicum virgatum L.) Biomass Production under Drought Conditions by the Ectomycorrhizal Fungus Sebacina vermifera. Applied and Environmental Microbiology, 2011, 77, 7063-7067.	1.4	75
39	Projections of Future Drought in the Continental United States and Mexico. Journal of Hydrometeorology, 2011, 12, 1359-1377.	0.7	105
40	The potential impacts of biomass feedstock production on water resource availability. Bioresource Technology, 2010, 101, 2014-2025.	4.8	85
41	Biomass Production in Switchgrass across the United States: Database Description and Determinants of Yield. Agronomy Journal, 2010, 102, 1158-1168.	0.9	232
42	Breeding Maize for a Bioeconomy: A Literature Survey Examining Harvest Index and Stover Yield and Their Relationship to Grain Yield. Crop Science, 2010, 50, 1-12.	0.8	134
43	Challenges in Scaling Up Biofuels Infrastructure. Science, 2010, 329, 793-796.	6.0	271
44	Adaptation science for agriculture and natural resource management — urgency and theoretical basis. Current Opinion in Environmental Sustainability, 2009, 1, 69-76.	3.1	127
45	An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose, 2009, 16, 547-565.	2.4	176
46	The influence of CO2 mitigation incentives on profitability of eucalyptus production on clay settling areas in Florida. Biomass and Bioenergy, 2009, 33, 785-792.	2.9	3
47	Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agriculture, Ecosystems and Environment, 2009, 132, 252-259.	2.5	168
48	Tolerance of switchgrass to extreme soil moisture stress: Ecological implications. Plant Science, 2009, 177, 724-732.	1.7	147
49	Second generation bioenergy crops and climate change: a review of the effects of elevated atmospheric CO ₂ and drought on water use and the implications for yield. GCB Bioenergy, 2009, 1, 97-114.	2.5	98
50	Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics, 2008, 31, 79-105.	1.7	925
51	Fast-growing trees for cogongrass (Imperata cylindrica) suppression and enhanced colonization of understory plant species on a phosphate-mine clay settling area. Ecological Engineering, 2008, 32, 329-336.	1.6	11
52	Is UK biofuel supply from <i>Miscanthus</i> waterâ€imited?. Soil Use and Management, 2008, 24, 235-245.	2.6	77
53	Evaluating Uncertainties in the Projection of Future Drought. Journal of Hydrometeorology, 2008, 9, 292-299.	0.7	219
54	Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology, 2008, 29, 157-169.	1.4	204

MATTHEW H LANGHOLTZ

#	Article	IF	CITATIONS
55	The economic feasibility of reclaiming phosphate mined lands with short-rotation woody crops in Florida. Journal of Forest Economics, 2007, 12, 237-249.	0.1	24
56	Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioproducts and Biorefining, 2007, 1, 147-157.	1.9	539
57	Is the choice of renewable portfolio standards random?. Energy Policy, 2007, 35, 5571-5575.	4.2	146
58	Assessing the Economic Feasibility of Short-Rotation Woody Crops in Florida. Edis, 2007, 2007, .	0.0	4
59	Gas exchange, biomass partition, and water relationships of three grass seedlings under water stress. Weed Biology and Management, 2006, 6, 79-88.	0.6	47
60	Switchgrass production for the upper southeastern USA: Influence of cultivar and cutting frequency on biomass yields. Biomass and Bioenergy, 2006, 30, 207-213.	2.9	166
61	Eucalyptus and Populus short rotation woody crops for phosphate mined lands in Florida USA. Biomass and Bioenergy, 2006, 30, 728-734.	2.9	23
62	Switchgrass simulation by the ALMANAC model at diverse sites in the southern US. Biomass and Bioenergy, 2005, 29, 419-425.	2.9	92
63	Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Climate Dynamics, 2005, 25, 739-753.	1.7	298
64	Seasonal and Inter-Annual Climate Forecasting: The New Tool for Increasing Preparedness to Climate Variability and Change In Agricultural Planning And Operations. Climatic Change, 2005, 70, 221-253.	1.7	215
65	Biomass Production of Switchgrass in Central South Dakota. Crop Science, 2005, 45, 2583.	0.8	75
66	Effect of dendroremediation incentives on the profitability of short-rotation woody cropping of Eucalyptus grandis. Forest Policy and Economics, 2005, 7, 806-817.	1.5	20
67	Stakeholder Networks: Improving Seasonal Climate Forecasts. Climatic Change, 2004, 65, 73-101.	1.7	79
68	Comparison of growth and performance in upland and lowland switchgrass types to water and nitrogen stress. Bioresource Technology, 2003, 86, 65-72.	4.8	106
69	Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. European Journal of Agronomy, 2002, 16, 97-110.	1.9	147
70	User perspectives of climate forecasts: crop producers in Pergamino, Argentina. Climate Research, 2001, 19, 57-67.	0.4	57
71	Associations between Grain Crop Yields in Central-Eastern Argentina and El Niño–Southern Oscillation. Journal of Applied Meteorology and Climatology, 1999, 38, 1488-1498.	1.7	107
72	Effect of Fire and Drought on the Ecophysiology of Andropogon gerardii and Panicum virgatum in a Tallgrass Prairie. Ecology, 1985, 66, 1309-1320.	1.5	221

#	Article	IF	CITATIONS
73	Lignin-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass. SAE International Journal of Materials and Manufacturing, 0, 7, 115-121.	0.3	34