
Jon Tomas Gudmundsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6297114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lonized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films, 2006, 513, 1-24.	0.8	886
2	High power impulse magnetron sputtering discharge. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	568
3	On the film density using high power impulse magnetron sputtering. Surface and Coatings Technology, 2010, 205, 591-596.	2.2	317
4	The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge. Thin Solid Films, 2006, 515, 1522-1526.	0.8	279
5	Oxygen discharges diluted with argon: dissociation processes. Plasma Sources Science and Technology, 2007, 16, 399-412.	1.3	247
6	Physics and technology of magnetron sputtering discharges. Plasma Sources Science and Technology, 2020, 29, 113001.	1.3	243
7	lodine Migration and Degradation of Perovskite Solar Cells Enhanced by Metallic Electrodes. Journal of Physical Chemistry Letters, 2016, 7, 5168-5175.	2.1	225
8	Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 278-280.	0.9	211
9	Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge. Surface and Coatings Technology, 2002, 161, 249-256.	2.2	189
10	Electronegativity of low-pressure high-density oxygen discharges. Journal Physics D: Applied Physics, 2001, 34, 1100-1109.	1.3	185
11	On the effect of the electron energy distribution on the plasma parameters of an argon discharge: a global (volume-averaged) model study. Plasma Sources Science and Technology, 2001, 10, 76-81.	1.3	165
12	Evolution of the electron energy distribution and plasma parameters in a pulsed magnetron discharge. Applied Physics Letters, 2001, 78, 3427-3429.	1.5	141
13	Improved volume-averaged model for steady and pulsed-power electronegative discharges. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 2025-2040.	0.9	107
14	Experimental studies of O2/Ar plasma in a planar inductive discharge. Plasma Sources Science and Technology, 1999, 8, 22-30.	1.3	102
15	An ionization region model for high-power impulse magnetron sputtering discharges. Plasma Sources Science and Technology, 2011, 20, 065007.	1.3	101
16	Spatial electron density distribution in a high-power pulsed magnetron discharge. IEEE Transactions on Plasma Science, 2005, 33, 346-347.	0.6	100
17	Low pressure hydrogen discharges diluted with argon explored using a global model. Plasma Sources Science and Technology, 2010, 19, 065008.	1.3	99
18	Plasma dynamics in a highly ionized pulsed magnetron discharge. Plasma Sources Science and Technology, 2005, 14, 525-531.	1.3	98

#	Article	IF	CITATIONS
19	An ionization region model of the reactive Ar/O ₂ high power impulse magnetron sputtering discharge. Plasma Sources Science and Technology, 2016, 25, 065004.	1.3	94
20	Recombination and detachment in oxygen discharges: the role of metastable oxygen molecules. Journal Physics D: Applied Physics, 2004, 37, 2073-2081.	1.3	93
21	The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool. Vacuum, 2010, 84, 1360-1364.	1.6	93
22	On the plasma parameters of a planar inductive oxygen discharge. Journal Physics D: Applied Physics, 2000, 33, 1323-1331.	1.3	91
23	A global (volume averaged) model of a nitrogen discharge: I. Steady state. Plasma Sources Science and Technology, 2009, 18, 045001.	1.3	86
24	Gas rarefaction and the time evolution of long high-power impulse magnetron sputtering pulses. Plasma Sources Science and Technology, 2012, 21, 045004.	1.3	82
25	A unified treatment of self-sputtering, process gas recycling, and runaway for high power impulse sputtering magnetrons. Plasma Sources Science and Technology, 2017, 26, 125003.	1.3	79
26	A global (volume averaged) model of a chlorine discharge. Plasma Sources Science and Technology, 2010, 19, 015001.	1.3	78
27	A benchmark study of a capacitively coupled oxygen discharge of the oopd1 particle-in-cell Monte Carlo code. Plasma Sources Science and Technology, 2013, 22, 035011.	1.3	77
28	On the electron energy in the high power impulse magnetron sputtering discharge. Journal of Applied Physics, 2009, 105, .	1.1	76
29	On sheath energization and Ohmic heating in sputtering magnetrons. Plasma Sources Science and Technology, 2013, 22, 045005.	1.3	72
30	Frequency-dependent conductivity in lithium-diffused and annealed GaAs. Physica B: Condensed Matter, 2003, 340-342, 324-328.	1.3	70
31	Model and measurements for a planar inductive oxygen discharge. Plasma Sources Science and Technology, 1998, 7, 1-12.	1.3	68
32	Normal and Inverted Hysteresis in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 11207-11214.	1.5	68
33	Foundations of DC plasma sources. Plasma Sources Science and Technology, 2017, 26, 123001.	1.3	64
34	Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering. Thin Solid Films, 2011, 520, 1621-1624.	0.8	62
35	Particle-balance models for pulsed sputtering magnetrons. Journal Physics D: Applied Physics, 2017, 50, 354003.	1.3	59
36	On the road to self-sputtering in high power impulse magnetron sputtering: particle balance and discharge characteristics. Plasma Sources Science and Technology, 2014, 23, 025017.	1.3	55

#	Article	IF	CITATIONS
37	Magnetic induction and plasma impedance in a cylindrical inductive discharge. Plasma Sources Science and Technology, 1997, 6, 540-550.	1.3	53
38	Current-voltage-time characteristics of the reactive Ar/N2 high power impulse magnetron sputtering discharge. Journal of Applied Physics, 2011, 110, 083306.	1.1	53
39	Rutile TiO 2 thin films grown by reactive high power impulse magnetron sputtering. Thin Solid Films, 2013, 545, 445-450.	0.8	51
40	Global model of plasma chemistry in a low-pressure O2/F2discharge. Journal Physics D: Applied Physics, 2002, 35, 328-341.	1.3	49
41	lonization mechanism in the high power impulse magnetron sputtering (HiPIMS) discharge. Journal of Physics: Conference Series, 2008, 100, 082013.	0.3	49
42	Optimizing the deposition rate and ionized flux fraction by tuning the pulse length in high power impulse magnetron sputtering. Plasma Sources Science and Technology, 2020, 29, 05LT01.	1.3	46
43	The Effect of Magnetic Field Strength and Geometry on the Deposition Rate and Ionized Flux Fraction in the HiPIMS Discharge. Plasma, 2019, 2, 201-221.	0.7	45
44	Digital smoothing of the Langmuir probe I-V characteristic. Review of Scientific Instruments, 2008, 79, 073503.	0.6	44
45	On three different ways to quantify the degree of ionization in sputtering magnetrons. Plasma Sources Science and Technology, 2018, 27, 105005.	1.3	44
46	In-situ electrical characterization of ultrathin TiN films grown by reactive dc magnetron sputtering on SiO2. Thin Solid Films, 2009, 517, 6731-6736.	0.8	41
47	The role of Ohmic heating in dc magnetron sputtering. Plasma Sources Science and Technology, 2016, 25, 065024.	1.3	41
48	The role of the metastable O ₂ (b\${{}^{1}}{Sigma}_{ext {g}}^{+}\$) and energy-dependent secondary electron emission yields in capacitively coupled oxygen discharges. Plasma Sources Science and Technology, 2016, 25, 055002.	1.3	39
49	Current–voltage–time characteristics of the reactive Ar/O2 high power impulse magnetron sputtering discharge. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 050601.	0.9	37
50	lon energy distribution in H2/Ar plasma in a planar inductive discharge. Plasma Sources Science and Technology, 1999, 8, 58-64.	1.3	36
51	lon-acoustic solitary waves in a high power pulsed magnetron sputtering discharge. Journal Physics D: Applied Physics, 2005, 38, 3417-3421.	1.3	36
52	A magnetron sputtering system for the preparation of patterned thin films and <i>in situ</i> thin film electrical resistance measurements. Review of Scientific Instruments, 2007, 78, 103901.	0.6	36
53	Optimization of HiPIMS discharges: The selection of pulse power, pulse length, gas pressure, and magnetic field strength. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	35
54	A global (volume averaged) model of a Cl ₂ /Ar discharge: I. Continuous power. Journal Physics D: Applied Physics, 2010, 43, 115201.	1.3	34

#	Article	IF	CITATIONS
55	On electron heating in a low pressure capacitively coupled oxygen discharge. Journal of Applied Physics, 2017, 122, .	1.1	34
56	The low pressure Cl ₂ /O ₂ discharge and the role of ClO. Plasma Sources Science and Technology, 2010, 19, 055008.	1.3	32
57	A study of the oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge using an ionization region model. Journal of Applied Physics, 2017, 121, .	1.1	32
58	Growth, coalescence, and electrical resistivity of thin Pt films grown by dc magnetron sputtering on SiO2. Applied Surface Science, 2008, 254, 7356-7360.	3.1	31
59	Electrical resistivity and morphology of ultra thin Pt films grown by dc magnetron sputtering on SiO ₂ . Journal of Physics: Conference Series, 2008, 100, 082006.	0.3	31
60	Nucleation and Resistivity of Ultrathin TiN Films Grown by High-Power Impulse Magnetron Sputtering. IEEE Electron Device Letters, 2012, 33, 1045-1047.	2.2	31
61	On reactive high power impulse magnetron sputtering. Plasma Physics and Controlled Fusion, 2016, 58, 014002.	0.9	31
62	Magnetic induction and plasma impedance in a planar inductive discharge. Plasma Sources Science and Technology, 1998, 7, 83-95. Technology, 1998, 7, 83-95.	1.3	30
63	display="inline"> <mml:msup><mml:mi>Ar</mml:mi><mml:mo>+</mml:mo></mml:msup> and <mml xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>Xe</mml:mi><mml:mo>+</mml:mo></mml:msup>Velocitie: near the Presheath-Sheath Boundary in an<mml:math< td=""><td></td><td>30</td></mml:math<></mml 		30
64	The frequency dependence of the discharge properties in a capacitively coupled oxygen discharge. Plasma Sources Science and Technology, 2018, 27, 025009.	1.3	30
65	Electron heating mode transitions in a low pressure capacitively coupled oxygen discharge. Plasma Sources Science and Technology, 2019, 28, 045012.	1.3	30
66	The pressure dependence of the discharge properties in a capacitively coupled oxygen discharge. Journal of Applied Physics, 2015, 118, 153302.	1.1	28
67	On the formation and annihilation of the singlet molecular metastables in an oxygen discharge. Journal Physics D: Applied Physics, 2015, 48, 325202.	1.3	28
68	Hydrogenation of polysilicon thin-film transistor in a planar inductive H/sub 2//Ar discharge. IEEE Electron Device Letters, 1999, 20, 223-225.	2.2	27
69	Plasma parameters in a planar dc magnetron sputtering discharge of argon and krypton. Journal of Physics: Conference Series, 2008, 100, 062018.	0.3	27
70	Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors. Optics Letters, 2012, 37, 4026.	1.7	27
71	A particle-in-cell/Monte Carlo simulation of a capacitively coupled chlorine discharge. Plasma Sources Science and Technology, 2013, 22, 055020.	1.3	27
72	Foundations of physical vapor deposition with plasma assistance. Plasma Sources Science and Technology, 2022, 31, 083001.	1.3	27

#	Article	IF	CITATIONS
73	Are the argon metastables important in high power impulse magnetron sputtering discharges?. Physics of Plasmas, 2015, 22, .	0.7	26
74	Growth and in-situ electrical characterization of ultrathin epitaxial TiN films on MgO. Thin Solid Films, 2011, 519, 5861-5867.	0.8	25
75	Reversal of Thermoelectric Current in Tubular Nanowires. Physical Review Letters, 2017, 119, 036804.	2.9	25
76	On the role of metastables in capacitively coupled oxygen discharges. Plasma Sources Science and Technology, 2015, 24, 035016.	1.3	24
77	Benchmarked and upgraded particle-in-cell simulations of a capacitive argon discharge at intermediate pressure: the role of metastable atoms. Plasma Sources Science and Technology, 2021, 30, 105009.	1.3	24
78	Experimental studies of Ar plasma in a planar inductive discharge. Plasma Sources Science and Technology, 1998, 7, 330-336.	1.3	23
79	Ionized physical vapor deposition (IPVD): magnetron sputtering discharges. Journal of Physics: Conference Series, 2008, 100, 082002.	0.3	23
80	Role of ionization fraction on the surface roughness, density, and interface mixing of the films deposited by thermal evaporation, dc magnetron sputtering, and HiPIMS: An atomistic simulation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	23
81	A current driven capacitively coupled chlorine discharge. Plasma Sources Science and Technology, 2014, 23, 025015.	1.3	21
82	Influence of the magnetic field on the discharge physics of a high power impulse magnetron sputtering discharge. Journal Physics D: Applied Physics, 2022, 55, 015202.	1.3	20
83	Vanadium and vanadium nitride thin films grown by high power impulse magnetron sputtering. Journal Physics D: Applied Physics, 2017, 50, 505302.	1.3	19
84	Reticulated Mesoporous TiO ₂ Scaffold, Fabricated by Spray Coating, for Largeâ€Area Perovskite Solar Cells. Energy Technology, 2020, 8, 1900922.	1.8	19
85	HiPIMS optimization by using mixed high-power and low-power pulsing. Plasma Sources Science and Technology, 2021, 30, 015015.	1.3	19
86	A global (volume averaged) model of a nitrogen discharge: II. Pulsed power modulation. Plasma Sources Science and Technology, 2009, 18, 045002.	1.3	18
87	The role of surface quenching of the singlet delta molecule in a capacitively coupled oxygen discharge. Plasma Sources Science and Technology, 2018, 27, 074002.	1.3	18
88	Tailored voltage waveforms applied to a capacitively coupled chlorine discharge. Plasma Sources Science and Technology, 2020, 29, 084004.	1.3	18
89	Morphology of TiN thin films grown on MgO(001) by reactive dc magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 912-915.	0.9	17
90	On how to measure the probabilities of target atom ionization and target ion back-attraction in high-power impulse magnetron sputtering. Journal of Applied Physics, 2021, 129, .	1.1	17

#	Article	IF	CITATIONS
91	Comparison of magnetic and structural properties of permalloy Ni ₈₀ Fe ₂₀ grown by dc and high power impulse magnetron sputtering. Journal Physics D: Applied Physics, 2018, 51, 285005.	1.3	16
92	Sideways deposition rate and ionized flux fraction in dc and high power impulse magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	15
93	On the electron energy distribution function in the high power impulse magnetron sputtering discharge. Plasma Sources Science and Technology, 2021, 30, 045011.	1.3	15
94	A reply to a comment on: `On the plasma parameters of a planar inductive oxygen discharge. Journal Physics D: Applied Physics, 2000, 33, 3010-3012.	1.3	14
95	The influence of the electron energy distribution on the low pressure chlorine discharge. Vacuum, 2012, 86, 808-812.	1.6	14
96	The properties of TiN ultra-thin films grown on SiO2 substrate by reactive high power impulse magnetron sputtering under various growth angles. Thin Solid Films, 2013, 548, 354-357.	0.8	14
97	On singlet metastable states, ion flux and ion energy in single and dual frequency capacitively coupled oxygen discharges. Journal Physics D: Applied Physics, 2017, 50, 175201.	1.3	14
98	The Influence of Secondary Electron Emission and Electron Reflection on a Capacitively Coupled Oxygen Discharge. Atoms, 2018, 6, 65.	0.7	14
99	Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering. Beilstein Journal of Nanotechnology, 2019, 10, 1914-1921.	1.5	14
100	Introduction to magnetron sputtering. , 2020, , 1-48.		14
101	Electron power absorption in radio frequency driven capacitively coupled chlorine discharge. Plasma Sources Science and Technology, 2021, 30, 065009.	1.3	14
102	The hysteresis-free behavior of perovskite solar cells from the perspective of the measurement conditions. Journal of Materials Chemistry C, 2019, 7, 5267-5274.	2.7	13
103	A global model study of low pressure high density CF4 discharge. Plasma Sources Science and Technology, 2019, 28, 025007.	1.3	13
104	Study of the transition from self-organised to homogeneous plasma distribution in chromium HiPIMS discharge. Journal Physics D: Applied Physics, 2020, 53, 155201.	1.3	13
105	Ionization region model of high power impulse magnetron sputtering of copper. Surface and Coatings Technology, 2022, 442, 128189.	2.2	13
106	Particle-in-Cell Simulations With Fluid Metastable Atoms in Capacitive Argon Discharges: Electron Elastic Scattering and Plasma Density Profile Transition. IEEE Transactions on Plasma Science, 2022, 50, 2548-2557.	0.6	13
107	Conductance oscillations of core-shell nanowires in transversal magnetic fields. Physical Review B, 2016, 93, .	1.1	12
108	Non-Maxwellian electron energy probability functions in the plume of a SPT-100 Hall thruster. Plasma Sources Science and Technology, 2018, 27, 015006.	1.3	12

#	Article	IF	CITATIONS
109	Growth of HfN thin films by reactive high power impulse magnetron sputtering. AIP Advances, 2018, 8, .	0.6	12
110	Graphene bandgap induced by ferroelectric <i>Pca</i> 2 ₁ HfO ₂ substrates: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 15001-15006.	1.3	12
111	Effect of atomic ordering on the magnetic anisotropy of single crystal Ni80Fe20. AlP Advances, 2019, 9,	0.6	12
112	Enhanced photoconductivity of SiGe nanocrystals in SiO2 driven by mild annealing. Applied Surface Science, 2019, 469, 870-878.	3.1	12
113	The ion energy distribution in a planar inductive oxygen discharge. Journal Physics D: Applied Physics, 1999, 32, 798-803.	1.3	11
114	Hydrogen passivation of AlxGa1â^'xAs/GaAs studied by surface photovoltage spectroscopy. Physica B: Condensed Matter, 1999, 273-274, 689-692.	1.3	11
115	A global (volume averaged) model of a Cl ₂ /Ar discharge: II. Pulsed power modulation. Journal Physics D: Applied Physics, 2010, 43, 115202.	1.3	11
116	Dual-frequency capacitively coupled chlorine discharge. Plasma Sources Science and Technology, 2015, 24, 015003.	1.3	11
117	Enhanced photoconductivity of embedded SiGe nanoparticles by hydrogenation. Applied Surface Science, 2019, 479, 403-409.	3.1	11
118	Electron power absorption dynamics in a low pressure radio frequency driven capacitively coupled discharge in oxygen. Journal of Applied Physics, 2020, 128, .	1.1	11
119	Ultra-thin poly-crystalline TiN films grown by HiPIMS on MgO(100) — In-situ resistance study of the initial stage of growth. Thin Solid Films, 2013, 549, 199-203.	0.8	10
120	On the role of metastable states in low pressure oxygen discharges. AIP Conference Proceedings, 2017, , .	0.3	10
121	Hardware and power management for high power impulse magnetron sputtering. , 2020, , 49-80.		10
122	Bandgap atomistic calculations on hydrogen-passivated GeSi nanocrystals. Scientific Reports, 2021, 11, 13582.	1.6	10
123	Impurity band in lithium-diffused and annealed GaAs: Conductivity and Hall effect measurements. Physical Review B, 2003, 67, .	1.1	9
124	A volume averaged global model study of the influence of the electron energy distribution and the wall material on an oxygen discharge. Journal Physics D: Applied Physics, 2015, 48, 495203.	1.3	9
125	Effect of substrate bias on microstructure of epitaxial film grown by HiPIMS: An atomistic simulation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	9
126	Surface effects in a capacitive argon discharge in the intermediate pressure regime. Plasma Sources Science and Technology, 2021, 30, 125011.	1.3	9

#	Article	IF	CITATIONS
127	Operating modes and target erosion in high power impulse magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	9
128	Plasma ignition in a grounded chamber connected to a capacitive discharge. Plasma Sources Science and Technology, 2006, 15, 276-287.	1.3	8
129	Efficacy of annealing and fabrication parameters on photo-response of SiGe in TiO ₂ matrix. Nanotechnology, 2019, 30, 365604.	1.3	8
130	Physics of high power impulse magnetron sputtering discharges. , 2020, , 265-332.		8
131	Obtaining SiGe nanocrystallites between crystalline TiO2 layers by HiPIMS without annealing. Applied Surface Science, 2020, 511, 145552.	3.1	8
132	Generating ultradense pair beams using 400 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>GeV</mml:mi> <mml:mo>/</mml:mo> <mml:mi> protons. Physical Review Research, 2021, 3, .</mml:mi></mml:math 	c₄/,ฮาml:m	i>8/mml:mat
133	Ion Energy and Angular Distributions in a Dual-Frequency Capacitively Coupled Chlorine Discharge. IEEE Transactions on Plasma Science, 2014, 42, 2854-2855.	0.6	7
134	On the role of ion potential energy in low energy HiPIMS deposition: An atomistic simulation. Surface and Coatings Technology, 2021, 426, 127726.	2.2	7
135	Collisionless electron cooling in a plasma thruster plume: experimental validation of a kinetic model. Plasma Sources Science and Technology, 2020, 29, 035029.	1.3	6
136	Modeling of high power impulse magnetron sputtering discharges with graphite target. Plasma Sources Science and Technology, 2021, 30, 115017.	1.3	6
137	Preparation and characterization of magnetron sputtered, ultra-thin Cr0.63Mo0.37 films on MgO. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1636-1639.	0.9	5
138	In situ resistivity measurements during growth of ultra-thin Cr0.7Mo0.3. Thin Solid Films, 2006, 515, 583-586.	0.8	5
139	Effect of hydrogenation on minority carrier lifetime in low-grade silicon. Physica Scripta, 2010, T141, 014005.	1.2	5
140	Preface to Special Topic: Reactive high power impulse magnetron sputtering. Journal of Applied Physics, 2017, 121, 171801.	1.1	5
141	Fabrication and characterization of Si _{1â^'} <i>_x</i> Ge <i>_x</i> nanocrystals in as-grown and annealed structures: a comparative study. Beilstein Journal of Nanotechnology, 2019, 10, 1873-1882.	1.5	5
142	Electron dynamics in high power impulse magnetron sputtering discharges. , 2020, , 81-110.		5
143	Reactive high power impulse magnetron sputtering. , 2020, , 223-263.		5
144	Structural and photoluminescence study of TiO2 layer with self-assembled Si1â^' <i>x</i> Ge <i>x</i> nanoislands. Journal of Applied Physics, 2020, 128, .	1.1	5

#	Article	IF	CITATIONS
145	Modeling of high power impulse magnetron sputtering discharges with tungsten target. Plasma Sources Science and Technology, 2022, 31, 065009.	1.3	5
146	Lithium-diffused and annealed GaAs: An admittance spectroscopy study. Physical Review B, 2004, 69, .	1.1	4
147	Heavy species dynamics in high power impulse magnetron sputtering discharges. , 2020, , 111-158.		4
148	Modeling the high power impulse magnetron sputtering discharge. , 2020, , 159-221.		4
149	Influence of preparation conditions on structure and photosensing properties of GeSi/TiO <inf>2</inf> multilayers. , 2017, , .		3
150	Tailoring interface alloying and magnetic properties in (111) Permalloy/Pt multilayers. Journal of Magnetism and Magnetic Materials, 2021, 538, 168288.	1.0	3
151	On Recycling in High Power Impulse Magnetron Sputtering Discharges. , 2018, , .		3
152	Potential Fluctuations and Site Switching in Si-doped GaAs Studied by Photoluminescence. Physica Scripta, 2002, T101, 114.	1.2	2
153	The effect of Si site-switching in GaAs on electrical properties and potential fluctuation. Physica B: Condensed Matter, 2001, 308-310, 804-807.	1.3	1
154	Growth of TiO2 thin films on Si(001) and SiO2 by reactive high power impulse magnetron sputtering. Materials Research Society Symposia Proceedings, 2011, 1352, 39.	0.1	1
155	On the population density of the argon excited levels in a high power impulse magnetron sputtering discharge. Physics of Plasmas, 2022, 29, 023506.	0.7	1
156	Lithium–gold-related complexes in p-type crystalline silicon. Physica B: Condensed Matter, 1999, 273-274, 379-382.	1.3	0
157	Electrical and structural properties of ultrathin polycrystalline and epitaxial TiN films grown by reactive dc magnetron sputtering. Materials Research Society Symposia Proceedings, 2009, 1156, 1.	0.1	0
158	Comparison of TiN thin films grown on SiO2 by reactive dc magnetron sputtering and high power impulse magnetron sputtering. Materials Research Society Symposia Proceedings, 2011, 1335, 81.	0.1	0
159	Morphology of Tantalum Nitride Thin Films Grown on Fused Quartz by Reactive High Power Impulse Magnetron Sputtering (HiPIMS). Materials Research Society Symposia Proceedings, 2015, 1803, 1.	0.1	0
160	On Electron Heating In Magnetron Sputtering Discharges. , 2017, , .		0
161	A Ballistic Transport Model for an Artificial Neuron. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900936.	0.8	0
162	On Electron Heating and Ion Recycling in High Power Impulse Magnetron Sputtering Discharge. , 2021, ,		0

10

#	Article	IF	CITATIONS
163	Photoluminescence study of Si1-xGex nanoparticles in various oxide matrices. , 2021, , .		0