Rémi Fromentin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6297047/publications.pdf

Version: 2024-02-01

43 papers

4,479 citations

28 h-index 330143 37 g-index

45 all docs

45 docs citations

45 times ranked

4838 citing authors

#	Article	IF	CITATIONS
1	The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo. PLoS Pathogens, 2015, 11, e1005142.	4.7	445
2	Activation of HIV Transcription with Short-Course Vorinostat in HIV-Infected Patients on Suppressive Antiretroviral Therapy. PLoS Pathogens, 2014, 10, e1004473.	4.7	437
3	Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Science Translational Medicine, 2015, 7, 319ra206.	12.4	390
4	CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART. PLoS Pathogens, 2016, 12, e1005761.	4.7	350
5	Identification of Genetically Intact HIV-1 Proviruses in Specific CD4 + T Cells from Effectively Treated Participants. Cell Reports, 2017, 21, 813-822.	6.4	304
6	A Novel Assay to Measure the Magnitude of the Inducible Viral Reservoir in HIV-infected Individuals. EBioMedicine, 2015, 2, 874-883.	6.1	242
7	Interleukin-7 promotes HIV persistence during antiretroviral therapy. Blood, 2013, 121, 4321-4329.	1.4	199
8	Cross-Clade Ultrasensitive PCR-Based Assays To Measure HIV Persistence in Large-Cohort Studies. Journal of Virology, 2014, 88, 12385-12396.	3.4	198
9	HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: An observational study. PLoS Medicine, 2017, 14, e1002417.	8.4	186
10	Single-cell characterization and quantification of translation-competent viral reservoirs in treated and untreated HIV infection. PLoS Pathogens, 2019, 15, e1007619.	4.7	177
11	Single-Cell Characterization of Viral Translation-Competent Reservoirs in HIV-Infected Individuals. Cell Host and Microbe, 2016, 20, 368-380.	11.0	170
12	PD-1 blockade potentiates HIV latency reversal ex vivo in CD4+ T cells from ART-suppressed individuals. Nature Communications, 2019, 10, 814.	12.8	149
13	Programmed cell death-1 contributes to the establishment and maintenance of HIV-1 latency. Aids, 2018, 32, 1491-1497.	2.2	136
14	HIV persists in CCR6+CD4+ T cells from colon and blood during antiretroviral therapy. Aids, 2017, 31, 35-48.	2,2	122
15	Reduced markers of HIV persistence and restricted HIV-specific immune responses after early antiretroviral therapy in children. Aids, 2014, 28, 1015-1020.	2.2	108
16	Single-cell TCR sequencing reveals phenotypically diverse clonally expanded cells harboring inducible HIV proviruses during ART. Nature Communications, 2020, 11, 4089.	12.8	77
17	Abundant HIV-infected cells in blood and tissues are rapidly cleared upon ART initiation during acute HIV infection. Science Translational Medicine, 2020, 12, .	12.4	69
18	Multiparametric characterization of rare HIV-infected cells using an RNA-flow FISH technique. Nature Protocols, 2017, 12, 2029-2049.	12.0	55

#	Article	IF	Citations
19	Loss of Function of Intestinal IL-17 and IL-22 Producing Cells Contributes to Inflammation and Viral Persistence in SIV-Infected Rhesus Macaques. PLoS Pathogens, 2016, 12, e1005412.	4.7	53
20	The HIV-1 proviral landscape reveals that Nef contributes to HIV-1 persistence in effector memory CD4+ T cells. Journal of Clinical Investigation, 2022, 132, .	8.2	52
21	Latency-Reversing Agents Induce Differential Responses in Distinct Memory CD4ÂT Cell Subsets in Individuals on Antiretroviral Therapy. Cell Reports, 2019, 29, 2783-2795.e5.	6.4	51
22	Association of Arterial and Lymph Node Inflammation With Distinct Inflammatory Pathways in Human Immunodeficiency Virus Infection. JAMA Cardiology, 2017, 2, 163.	6.1	50
23	Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: A case study. PLoS Medicine, 2017, 14, e1002461.	8.4	50
24	Pembrolizumab induces HIV latency reversal in people living with HIV and cancer on antiretroviral therapy. Science Translational Medicine, 2022, 14, eabl3836.	12.4	50
25	The multifaceted nature of HIV latency. Journal of Clinical Investigation, 2020, 130, 3381-3390.	8.2	49
26	Human Immunodeficiency Virus (HIV)–Infected CCR6+ Rectal CD4+ T Cells and HIV Persistence On Antiretroviral Therapy. Journal of Infectious Diseases, 2020, 221, 744-755.	4.0	39
27	Combination Immune Checkpoint Blockade to Reverse HIV Latency. Journal of Immunology, 2020, 204, 1242-1254.	0.8	38
28	HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Seminars in Immunology, 2021, 51, 101438.	5.6	36
29	Combined single-cell transcriptional, translational, and genomic profiling reveals HIV-1 reservoir diversity. Cell Reports, 2021, 36, 109643.	6.4	34
30	High levels of genetically intact HIV in HLA-DR+ memory T cells indicates their value for reservoir studies. Aids, 2020, 34, 659-668.	2.2	32
31	Integrated immunovirological profiling validates plasma SARS-CoV-2 RNA as an early predictor of COVID-19 mortality. Science Advances, 2021, 7, eabj5629.	10.3	32
32	Anti-HIV Antibody Responses and the HIV Reservoir Size during Antiretroviral Therapy. PLoS ONE, 2016, 11, e0160192.	2.5	26
33	Impact of Antiretroviral Therapy Duration on HIV-1 Infection of T Cells within Anatomic Sites. Journal of Virology, 2020, 94, .	3.4	20
34	Combination Immune Checkpoint Blockade Enhances IL-2 and CD107a Production from HIV-Specific T Cells Ex Vivo in People Living with HIV on Antiretroviral Therapy. Journal of Immunology, 2022, 208, 54-62.	0.8	16
35	The ingenol-based protein kinase C agonist GSK445A is a potent inducer of HIV and SIV RNA transcription. PLoS Pathogens, 2022, 18, e1010245.	4.7	11
36	Cellular Activation, Differentiation, and Proliferation Influence the Dynamics of Genetically Intact Proviruses Over Time. Journal of Infectious Diseases, 2022, 225, 1168-1178.	4.0	9

#	Article	IF	CITATIONS
37	Fingolimod inhibits multiple stages of the HIV-1 life cycle. PLoS Pathogens, 2020, 16, e1008679.	4.7	8
38	Fingolimod inhibits multiple stages of the HIV-1 life cycle. , 2020, 16, e1008679.		0
39	Fingolimod inhibits multiple stages of the HIV-1 life cycle. , 2020, 16, e1008679.		О
40	Fingolimod inhibits multiple stages of the HIV-1 life cycle., 2020, 16, e1008679.		0
41	Fingolimod inhibits multiple stages of the HIV-1 life cycle. , 2020, 16, e1008679.		О
42	Fingolimod inhibits multiple stages of the HIV-1 life cycle., 2020, 16, e1008679.		0
43	Fingolimod inhibits multiple stages of the HIV-1 life cycle. , 2020, 16, e1008679.		O