
Mingui Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/629702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRIM47 is a novel endothelial activation factor that aggravates lipopolysaccharide-induced acute lung injury in mice via K63-linked ubiquitination of TRAF2. Signal Transduction and Targeted Therapy, 2022, 7, 148.	7.1	23
2	Vascular Endothelial Glycocalyx Damage and Potential Targeted Therapy in COVID-19. Cells, 2022, 11, 1972.	1.8	17
3	Loss of keratinocyte Mcpip1 abruptly activates the IL-23/Th17 and Stat3 pathways in skin inflammation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118866.	1.9	5
4	Murine myeloid cell MCPIP1 suppresses autoimmunity by regulating B-cell expansion and differentiation. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	11
5	Regnase-1 is essential for B cell homeostasis to prevent immunopathology. Journal of Experimental Medicine, 2021, 218, .	4.2	13
6	Deletion of Mcpip1 in Mcpip1fl/flAlbCre mice recapitulates the phenotype of human primary biliary cholangitis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166086.	1.8	12
7	Role of Mcpip1 in obesityâ€induced hepatic steatosis as determined by myeloid and liverâ€specific conditional knockouts. FEBS Journal, 2021, 288, 6563-6580.	2.2	4
8	Molecular Mechanisms of ZC3H12C/Reg-3 Biological Activity and Its Involvement in Psoriasis Pathology. International Journal of Molecular Sciences, 2021, 22, 7311.	1.8	2
9	Direct Activation of Endothelial Cells by SARS-CoV-2 Nucleocapsid Protein Is Blocked by Simvastatin. Journal of Virology, 2021, 95, e0139621.	1.5	52
10	Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances antitumor responses. Nature Immunology, 2021, 22, 1563-1576.	7.0	22
11	TRIM14 promotes endothelial activation via activating NF-κB signaling pathway. Journal of Molecular Cell Biology, 2020, 12, 176-189.	1.5	33
12	TRIM65 E3 ligase targets VCAM-1 degradation to limit LPS-induced lung inflammation. Journal of Molecular Cell Biology, 2020, 12, 190-201.	1.5	25
13	TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages through JNK signaling pathway. Cellular Signalling, 2020, 67, 109522.	1.7	24
14	Tristetraprolin Regulates TH17 Cell Function and Ameliorates DSS-Induced Colitis in Mice. Frontiers in Immunology, 2020, 11, 1952.	2.2	9
15	Heat shock protein 90 inhibitors suppress pyroptosis in THP-1 cells. Biochemical Journal, 2020, 477, 3923-3934.	1.7	21
16	The Role of Ubiquitin E3 Ligase in Atherosclerosis. Current Medicinal Chemistry, 2020, 28, 152-168.	1.2	9
17	Selective degradation of plasmid-derived mRNAs by MCPIP1 RNase. Biochemical Journal, 2019, 476, 2927-2938.	1.7	6
18	RNase MCPIP1 regulates hepatic peroxisome proliferator-activated receptor gamma via TXNIP/PGC-1alpha pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1458-1471.	1.2	11

Мімсиі Fu

#	Article	IF	CITATIONS
19	Keratinocyte-specific ablation of Mcpip1 impairs skin integrity and promotes local and systemic inflammation. Journal of Molecular Medicine, 2019, 97, 1669-1684.	1.7	14
20	Endothelial to mesenchymal transition in atherosclerotic vascular remodeling. Clinica Chimica Acta, 2019, 490, 34-38.	0.5	37
21	<scp>CD</scp> 38 deficiency suppresses adipogenesis and lipogenesis in adipose tissues through activating Sirt1/ <scp>PPAR</scp> i³ signaling pathway. Journal of Cellular and Molecular Medicine, 2018, 22, 101-110.	1.6	41
22	Polarizing Macrophages In Vitro. Methods in Molecular Biology, 2018, 1784, 119-126.	0.4	135
23	CD38 Deficiency Promotes Inflammatory Response through Activating Sirt1/NF- <i>ΰ</i> B-Mediated Inhibition of TLR2 Expression in Macrophages. Mediators of Inflammation, 2018, 2018, 1-13.	1.4	18
24	Pharmacological inhibition of MALT1 protease activity suppresses endothelial activation via enhancing MCPIP1 expression. Cellular Signalling, 2018, 50, 1-8.	1.7	9
25	Expression profiling of TRIM protein family in THP1-derived macrophages following TLR stimulation. Scientific Reports, 2017, 7, 42781.	1.6	49
26	CD38 promotes angiotensin IIâ€induced cardiac hypertrophy. Journal of Cellular and Molecular Medicine, 2017, 21, 1492-1502.	1.6	65
27	RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nature Reviews Immunology, 2017, 17, 130-143.	10.6	258
28	Computational Analysis on Down-Regulated Images of Macrophage Scavenger Receptor. Pharmaceutical Research, 2017, 34, 2066-2074.	1.7	6
29	Interaction between the PH and START domains of ceramide transfer protein competes with phosphatidylinositol 4-phosphate binding by the PH domain. Journal of Biological Chemistry, 2017, 292, 14217-14228.	1.6	35
30	Central role of myeloid MCPIP1 in protecting against LPS-induced inflammation and lung injury. Signal Transduction and Targeted Therapy, 2017, 2, 17066.	7.1	48
31	Evaluation of the Antioxidative, Antibacterial, and Anti-Inflammatory Effects of the <i>Aloe</i> Fermentation Supernatant Containing <i>Lactobacillus plantarum</i> HM218749.1. Mediators of Inflammation, 2016, 2016, 1-8.	1.4	25
32	CD38 Deficiency Protects the Heart from Ischemia/Reperfusion Injury through Activating SIRT1/FOXOs-Mediated Antioxidative Stress Pathway. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-14.	1.9	56
33	Methamphetamine potentiates HIV-1 gp120-mediated autophagy via Beclin-1 and Atg5/7 as a pro-survival response in astrocytes. Cell Death and Disease, 2016, 7, e2425-e2425.	2.7	33
34	Adiporedoxin suppresses endothelial activation via inhibiting MAPK and NF-κB signaling. Scientific Reports, 2016, 6, 38975.	1.6	23
35	Short Communication: Preferential Killing of HIV Latently Infected CD4 ⁺ T Cells by MALT1 Inhibitor. AIDS Research and Human Retroviruses, 2016, 32, 174-177.	0.5	11
36	MCPIP1 Selectively Destabilizes Transcripts Associated with an Antiapoptotic Gene Expression Program in Breast Cancer Cells That Can Elicit Complete Tumor Regression. Cancer Research, 2016, 76, 1429-1440.	0.4	74

Мімсиі Fu

#	Article	IF	CITATIONS
37	Cocaine-Mediated Autophagy in Astrocytes Involves Sigma 1 Receptor, PI3K, mTOR, Atg5/7, Beclin-1 and Induces Type II Programed Cell Death. Molecular Neurobiology, 2016, 53, 4417-4430.	1.9	40
38	Identification of the interaction of VP1 with GM130 which may implicate in the pathogenesis of CVB3-induced acute pancreatitis. Scientific Reports, 2015, 5, 13324.	1.6	11
39	TRIM59 Promotes the Proliferation and Migration of Non-Small Cell Lung Cancer Cells by Upregulating Cell Cycle Related Proteins. PLoS ONE, 2015, 10, e0142596.	1.1	105
40	Monocyte Chemotactic Protein-induced Protein 1 and 4 Form a Complex but Act Independently in Regulation of Interleukin-6 mRNA Degradation. Journal of Biological Chemistry, 2015, 290, 20782-20792.	1.6	25
41	Adipocyte-derived PAMM suppresses macrophage inflammation by inhibiting MAPK signalling. Biochemical Journal, 2015, 472, 309-318.	1.7	19
42	TRAF Family Member-associated NF-κB Activator (TANK) Inhibits Genotoxic Nuclear Factor κB Activation by Facilitating Deubiquitinase USP10-dependent Deubiquitination of TRAF6 Ligase. Journal of Biological Chemistry, 2015, 290, 13372-13385.	1.6	87
43	The Monocarboxylate Transporter 4 Is Required for Glycolytic Reprogramming and Inflammatory Response in Macrophages. Journal of Biological Chemistry, 2015, 290, 46-55.	1.6	146
44	TANK Inhibits Genotoxic NF‵B Activation by Facilitating MCPIP1/USP10â€dependent Deubiquitination of TRAF6. FASEB Journal, 2015, 29, 728.17.	0.2	0
45	miR-27a Regulates Inflammatory Response of Macrophages by Targeting IL-10. Journal of Immunology, 2014, 193, 327-334.	0.4	121
46	MicroRNA-155 Deficiency Results in Decreased Macrophage Inflammation and Attenuated Atherogenesis in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 759-767.	1.1	179
47	Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nature Immunology, 2014, 15, 1079-1089.	7.0	238
48	Post-transcriptional gene regulation by RNA-binding proteins in vascular endothelial dysfunction. Science China Life Sciences, 2014, 57, 836-844.	2.3	14
49	HIV-1 Nef Induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors. Scientific Reports, 2014, 4, 4450.	1.6	49
50	USP10 inhibits genotoxic NF-κB activation by MCPIP1-facilitated deubiquitination of NEMO. EMBO Journal, 2013, 32, 3206-3219.	3.5	89
51	MCPIP1 restricts HIV infection and is rapidly degraded in activated CD4+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19083-19088.	3.3	54
52	MCPIP1 negatively regulates toll-like receptor 4 signaling and protects mice from LPS-induced septic shock. Cellular Signalling, 2013, 25, 1228-1234.	1.7	39
53	Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunology and Cell Biology, 2013, 91, 368-376.	1.0	52
54	Zc3h12c inhibits vascular inflammation by repressing NF-κB activation and pro-inflammatory gene expression in endothelial cells. Biochemical Journal, 2013, 451, 55-60.	1.7	32

Mingui Fu

#	Article	IF	CITATIONS
55	Suppression of IL-12 Production by Tristetraprolin through Blocking NF-кB Nuclear Translocation. Journal of Immunology, 2013, 191, 3922-3930.	0.4	28
56	Increased Th17 Cells in the Tumor Microenvironment Is Mediated by IL-23 via Tumor-Secreted Prostaglandin E2. Journal of Immunology, 2013, 190, 5894-5902.	0.4	73
57	Bone Marrow Deficiency of MCPIP1 Results in Severe Multi-Organ Inflammation but Diminishes Atherogenesis in Hyperlipidemic Mice. PLoS ONE, 2013, 8, e80089.	1.1	15
58	MCPIP1 Deficiency in Mice Results in Severe Anemia Related to Autoimmune Mechanisms. PLoS ONE, 2013, 8, e82542.	1.1	17
59	MCPIPâ€l deficiency induces hepatic inflammation and impairs insulin signaling in mice. FASEB Journal, 2013, 27, 918.5.	0.2	0
60	Identification of TLT2 as an Engulfment Receptor for Apoptotic Cells. Journal of Immunology, 2012, 188, 6381-6388.	0.4	34
61	Regulation of CCL5 Expression in Smooth Muscle Cells Following Arterial Injury. PLoS ONE, 2012, 7, e30873.	1.1	18
62	The putative tumor suppressor Zc3h12d modulates toll-like receptor signaling in macrophages. Cellular Signalling, 2012, 24, 569-576.	1.7	52
63	Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. Journal of Clinical Investigation, 2012, 122, 1688-1699.	3.9	166
64	Monocyte Chemotactic Protein-induced Protein 1 (MCPIP1) Suppresses Stress Granule Formation and Determines Apoptosis under Stress. Journal of Biological Chemistry, 2011, 286, 41692-41700.	1.6	46
65	MCPâ€induced protein 1 suppresses TNFαâ€induced VCAMâ€1 expression in human endothelial cells. FEBS Letters, 2010, 584, 3065-3072.	1.3	32
66	MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-κB signaling. Journal of Experimental Medicine, 2010, 207, 2959-2973.	4.2	260
67	RNA-destabilizing Factor Tristetraprolin Negatively Regulates NF-κB Signaling. Journal of Biological Chemistry, 2009, 284, 29383-29390.	1.6	80
68	Expression Profiling of Nuclear Receptors in Human and Mouse Embryonic Stem Cells. Molecular Endocrinology, 2009, 23, 724-733.	3.7	57
69	MicroRNA let-7 Regulates 3T3-L1 Adipogenesis. Molecular Endocrinology, 2009, 23, 925-931.	3.7	253
70	A Novel CCCH-Zinc Finger Protein Family Regulates Proinflammatory Activation of Macrophages. Journal of Biological Chemistry, 2008, 283, 6337-6346.	1.6	223
71	Genome-Wide Survey and Expression Profiling of CCCH-Zinc Finger Family Reveals a Functional Module in Macrophage Activation. PLoS ONE, 2008, 3, e2880.	1.1	152
72	Cardiac peroxisome proliferator-activated receptor Î ³ is essential in protecting cardiomyocytes from oxidative damage. Cardiovascular Research, 2007, 76, 269-279.	1.8	142

Мімдиі Fu

#	Article	IF	CITATIONS
73	Role of ENPP1 on Adipocyte Maturation. PLoS ONE, 2007, 2, e882.	1.1	43
74	Rad GTPase Attenuates Vascular Lesion Formation by Inhibition of Vascular Smooth Muscle Cell Migration. Circulation, 2005, 111, 1071-1077.	1.6	69
75	A Nuclear Receptor Atlas: 3T3-L1 Adipogenesis. Molecular Endocrinology, 2005, 19, 2437-2450.	3.7	211
76	Impaired expression of PPARÎ ³ protein contributes to the exaggerated growth of vascular smooth muscle cells in spontaneously hypertensive rats. Life Sciences, 2005, 77, 3037-3048.	2.0	15
77	Selective disruption of PPARÂ2 impairs the development of adipose tissue and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10703-10708.	3.3	244
78	Interferon Regulatory Factor-1 Mediates PPARÎ ³ -Induced Apoptosis in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 257-263.	1.1	35
79	Egr-1 target genes in human endothelial cells identified by microarray analysis. Gene, 2003, 315, 33-41.	1.0	144
80	Early stimulation and late inhibition of peroxisome proliferator-activated receptor gamma (PPARgamma) gene expression by transforming growth factor beta in human aortic smooth muscle cells: role of early growth-response factor-1 (Egr-1), activator protein 1 (AP1) and Smads. Biochemical Journal, 2003, 370, 1019-1025.	1.7	76
81	Peroxisome Proliferator-Activated Receptors and the Cardiovascular System. Vitamins and Hormones, 2003, 66, 157-188.	0.7	44
82	Peroxisome Proliferator-activated Receptor δIs Up-regulated during Vascular Lesion Formation and Promotes Post-confluent Cell Proliferation in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2002, 277, 11505-11512.	1.6	89
83	Early Growth Response Factor-1 Is a Critical Transcriptional Mediator of Peroxisome Proliferator-activated Receptor-γ1 Gene Expression in Human Aortic Smooth Muscle Cells. Journal of Biological Chemistry, 2002, 277, 26808-26814.	1.6	56
84	Activation of peroxisome proliferator-activated receptor Î ³ inhibits osteoprotegerin gene expression in human aortic smooth muscle cells. Biochemical and Biophysical Research Communications, 2002, 294, 597-601.	1.0	58
85	15-Deoxy-prostaglandin J2 inhibits PDGF-A and -B chain expression in human vascular endothelial cells independent of PPARÎ ³ . Biochemical and Biophysical Research Communications, 2002, 298, 128-132.	1.0	29
86	PDGF induces osteoprotegerin expression in vascular smooth muscle cells by multiple signal pathways. FEBS Letters, 2002, 521, 180-184.	1.3	121
87	Peroxisome Proliferator-activated Receptor Î ³ Inhibits Transforming Growth Factor Î ² -induced Connective Tissue Growth Factor Expression in Human Aortic Smooth Muscle Cells by Interfering with Smad3. Journal of Biological Chemistry, 2001, 276, 45888-45894.	1.6	162
88	Platelet-Derived Growth Factor Promotes the Expression of Peroxisome Proliferator-Activated Receptor Î ³ in Vascular Smooth Muscle Cells by a Phosphatidylinositol 3-Kinase/Akt Signaling Pathway. Circulation Research, 2001, 89, 1058-1064.	2.0	43
89	Involvement of calcineurin in angiotensin II-induced cardiomyocyte hypertrophy and cardiac fibroblast hyperplasia of rats. Heart and Vessels, 1999, 14, 283-288.	0.5	19