Kaiyuan Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6296799/publications.pdf

Version: 2024-02-01

126858 276775 5,496 41 33 41 citations h-index g-index papers 42 42 42 5856 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioactive Materials, 2022, 12, 214-245.	8.6	45
2	Dimethylaminomicheliolide Sensitizes Cancer Cells to Radiotherapy for Synergistic Combination with Immune Checkpoint Blockade. Advanced Therapeutics, 2022, 5, 2100160.	1.6	O
3	Co-delivery of dihydroartemisinin and pyropheophorbide-iron elicits ferroptosis to potentiate cancer immunotherapy. Biomaterials, 2022, 280, 121315.	5.7	46
4	Synergistic checkpoint-blockade and radiotherapy–radiodynamic therapy via an immunomodulatory nanoscale metal–organic framework. Nature Biomedical Engineering, 2022, 6, 144-156.	11.6	47
5	Surface engineered iron oxide nanozyme for synergistic chemodynamic/photodynamic therapy with glutathione depletion and hypoxia relief. Chemical Engineering Journal, 2022, 440, 135966.	6.6	28
6	STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nature Materials, 2022, 21, 710-720.	13.3	114
7	Engineering manganese ferrite shell on iron oxide nanoparticles for enhanced T1 magnetic resonance imaging. Journal of Colloid and Interface Science, 2022, 626, 364-373.	5.0	10
8	Nanoscale Metal–Organic Layer Isolates Phthalocyanines for Efficient Mitochondria-Targeted Photodynamic Therapy. Journal of the American Chemical Society, 2021, 143, 2194-2199.	6.6	94
9	Synergistic Enhancement of Fluorescence and Magnetic Resonance Signals Assisted by Albumin Aggregate for Dual-Modal Imaging. ACS Nano, 2021, 15, 9924-9934.	7.3	27
10	Monte Carlo Simulations Reveal New Design Principles for Efficient Nanoradiosensitizers Based on Nanoscale Metal–Organic Frameworks. Advanced Materials, 2021, 33, e2104249.	11.1	18
11	Renal Clearable Ultrasmall Single-Crystal Fe Nanoparticles for Highly Selective and Effective Ferroptosis Therapy and Immunotherapy. Journal of the American Chemical Society, 2021, 143, 15812-15823.	6.6	136
12	Bifunctional Metal–Organic Layers for Tandem Catalytic Transformations Using Molecular Oxygen and Carbon Dioxide. Journal of the American Chemical Society, 2021, 143, 16718-16724.	6.6	28
13	Reprogramming of Neutrophils as Non-canonical Antigen Presenting Cells by Radiotherapy–Radiodynamic Therapy to Facilitate Immune-Mediated Tumor Regression. ACS Nano, 2021, 15, 17515-17527.	7.3	22
14	A Nanoscale Metal–Organic Framework to Mediate Photodynamic Therapy and Deliver CpG Oligodeoxynucleotides to Enhance Antigen Presentation and Cancer Immunotherapy. Angewandte Chemie, 2020, 132, 1124-1128.	1.6	34
15	A Nanoscale Metal–Organic Framework to Mediate Photodynamic Therapy and Deliver CpG Oligodeoxynucleotides to Enhance Antigen Presentation and Cancer Immunotherapy. Angewandte Chemie - International Edition, 2020, 59, 1108-1112.	7.2	144
16	Nanoscale metal-organic frameworks for x-ray activated in situ cancer vaccination. Science Advances, 2020, 6, .	4.7	40
17	Nanoscale Metal–Organic Framework Co-delivers TLR-7 Agonists and Anti-CD47 Antibodies to Modulate Macrophages and Orchestrate Cancer Immunotherapy. Journal of the American Chemical Society, 2020, 142, 12579-12584.	6.6	107
18	Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. Journal of Experimental Medicine, 2020, 217, .	4.2	172

#	Article	IF	CITATIONS
19	Nanoscale Metal–Organic Frameworks for Cancer Immunotherapy. Accounts of Chemical Research, 2020, 53, 1739-1748.	7.6	128
20	Nanoscale Metal–Organic Frameworks Generate Reactive Oxygen Species for Cancer Therapy. ACS Central Science, 2020, 6, 861-868.	5.3	110
21	Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Advanced Drug Delivery Reviews, 2020, 158, 73-90.	6.6	83
22	Nanoscale Metal–Organic Frameworks Stabilize Bacteriochlorins for Type I and Type II Photodynamic Therapy. Journal of the American Chemical Society, 2020, 142, 7334-7339.	6.6	128
23	Cerium-Based Metal–Organic Layers Catalyze Hydrogen Evolution Reaction through Dual Photoexcitation. Journal of the American Chemical Society, 2020, 142, 6866-6871.	6.6	49
24	Biomimetic nanoscale metal–organic framework harnesses hypoxia for effective cancer radiotherapy and immunotherapy. Chemical Science, 2020, 11, 7641-7653.	3.7	78
25	Ultrathin Metal-Organic-Layer Mediated Radiotherapy-Radiodynamic Therapy. Matter, 2019, 1, 1331-1353.	5.0	78
26	Nanoscale Metal–Organic Framework Hierarchically Combines High-Z Components for Multifarious Radio-Enhancement. Journal of the American Chemical Society, 2019, 141, 6859-6863.	6.6	74
27	Titanium-Based Nanoscale Metal–Organic Framework for Type I Photodynamic Therapy. Journal of the American Chemical Society, 2019, 141, 4204-4208.	6.6	242
28	Multifunctional Nanoscale Metal–Organic Layers for Ratiometric pH and Oxygen Sensing. Journal of the American Chemical Society, 2019, 141, 18964-18969.	6.6	60
29	Nanoscale metal–organic frameworks for phototherapy of cancer. Coordination Chemistry Reviews, 2019, 379, 65-81.	9.5	309
30	Ultrathin metal-organic layer-mediated radiotherapy-radiodynamic therapy enhances immunotherapy of metastatic cancers. Matter, 2019, 1, 1331-1353.	5.0	20
31	Nanoscale Metal–Organic Framework Overcomes Hypoxia for Photodynamic Therapy Primed Cancer Immunotherapy. Journal of the American Chemical Society, 2018, 140, 5670-5673.	6.6	557
32	Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nature Biomedical Engineering, 2018, 2, 600-610.	11.6	438
33	Nanoscale Metal–Organic Layers for Radiotherapy–Radiodynamic Therapy. Journal of the American Chemical Society, 2018, 140, 16971-16975.	6.6	102
34	Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nature Communications, 2018, 9, 4321.	5.8	243
35	Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nature Communications, 2018, 9, 2351.	5.8	253
36	Nanoscale Metal–Organic Layers for Deeply Penetrating Xâ€rayâ€Induced Photodynamic Therapy. Angewandte Chemie, 2017, 129, 12270-12274.	1.6	59

Kaiyuan Ni

#	Article	IF	CITATION
37	Nanoscale Metal–Organic Layers for Deeply Penetrating Xâ€rayâ€Induced Photodynamic Therapy. Angewandte Chemie - International Edition, 2017, 56, 12102-12106.	7.2	146
38	Chlorin-Based Nanoscale Metal–Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immunotherapy. Journal of the American Chemical Society, 2016, 138, 12502-12510.	6.6	429
39	Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T ₁ contrast ability. Nanoscale, 2016, 8, 3768-3774.	2.8	57
40	Anisotropic Shaped Iron Oxide Nanostructures: Controlled Synthesis and Proton Relaxation Shortening Effects. Chemistry of Materials, 2015, 27, 3505-3515.	3.2	153
41	Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nature Communications, 2013, 4, 2266.	5.8	399