
Fredrik Johansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6296761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implementation of reliability-based thresholds to excavation of shotcrete-supported rock tunnels. Georisk, 2023, 17, 361-375.	3.5	2
2	Peak Shear Strength of Natural, Unfilled Rock Joints in the Field Based on Data from Drill Cores – A Conceptual Study Based on Large Laboratory Shear Tests. Rock Mechanics and Rock Engineering, 2022, 55, 5083-5106.	5.4	5
3	Prediction of Peak Shear Strength of Natural, Unfilled Rock Joints Accounting for Matedness Based on Measured Aperture. Rock Mechanics and Rock Engineering, 2021, 54, 1533-1550.	5.4	26
4	The importance of accounting for matedness when predicting the peak shear strength of rock joints. IOP Conference Series: Earth and Environmental Science, 2021, 833, 012017.	0.3	1
5	Experimental program on mechanical properties of large rock fractures. IOP Conference Series: Earth and Environmental Science, 2021, 833, 012015.	0.3	3
6	Influence of large-scale asperities on the shear strength of concrete-rock interface of small buttress dams. Engineering Structures, 2021, 245, 112952.	5.3	7
7	Numerical modelling of incipient motion of fracture infillings. International Journal of Rock Mechanics and Minings Sciences, 2021, 148, 104960.	5.8	3
8	Principles of Risk-Based Rock Engineering Design. Rock Mechanics and Rock Engineering, 2020, 53, 1129-1143.	5.4	16
9	Measurement of ice pressure on a concrete dam with a prototype ice load panel. Cold Regions Science and Technology, 2020, 170, 102923.	3.5	4
10	Influence of location of large-scale asperity on shear strength of concrete-rock interface under eccentric load. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12, 449-460.	8.1	18
11	Influence of spatially varying thickness on load-bearing capacity of shotcrete. Tunnelling and Underground Space Technology, 2020, 98, 103336.	6.2	5
12	Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena, 2019, 183, 104225.	5.0	108
13	Probability distributions of shotcrete parameters for reliability-based analyses of rock tunnel support. Tunnelling and Underground Space Technology, 2019, 87, 15-26.	6.2	26
14	On the Need for a Risk-Based Framework in Eurocode 7 to Facilitate Design of Underground Openings in Rock. Rock Mechanics and Rock Engineering, 2018, 51, 2427-2431.	5.4	8
15	When is the observational method in geotechnical engineering favourable?. Structural Safety, 2017, 66, 17-26.	5.3	46
16	Implementing the Extended Multivariate Approach in Design with Partial Factors for a Retaining Wall in Clay. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2017, 3, .	1.7	2
17	Reliability aspects of rock tunnel design with the observational method. International Journal of Rock Mechanics and Minings Sciences, 2017, 98, 102-110.	5.8	31

Application of Low-Frequency Rectangular Pressure Impulse in Rock Grouting., 2017,,.

0

Fredrik Johansson

#	Article	IF	CITATIONS
19	Challenges in Applying Fixed Partial Factors to Rock Engineering Design. , 2017, , .		4
20	Influence of Cohesive Strength in Probabilistic Sliding Stability Reassessment of Concrete Dams. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2017, 143, .	3.0	7
21	Shear Strength of Partially Bonded Concrete–Rock Interfaces for Application in Dam Stability Analyses. Rock Mechanics and Rock Engineering, 2016, 49, 2711-2722.	5.4	54
22	Using Observational Method to Manage Safety Aspects of Remedial Grouting of Concrete Dam Foundations. Geotechnical and Geological Engineering, 2016, 34, 1613-1630.	1.7	12
23	Updated relations for the uniaxial compressive strength of marlstones based on P-wave velocity and point load index test. Innovative Infrastructure Solutions, 2016, 1, 1.	2.2	33
24	Influence of scale and matedness on the peak shear strength of fresh, unweathered rock joints. International Journal of Rock Mechanics and Minings Sciences, 2016, 82, 36-47.	5.8	49
25	Effects of spatial variation in cohesion over the concrete-rock interface on dam sliding stability. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7, 659-667.	8.1	38
26	A conceptual model for the peak shear strength of fresh and unweathered rock joints. International Journal of Rock Mechanics and Minings Sciences, 2014, 69, 31-38.	5.8	54
27	On the use of pore pressure measurements in safety reassessments of concrete dams founded on rock. Georisk, 2014, 8, 117-128.	3.5	7
28	Advances, current limitations and future requirements for a numerical shear box for rock joints using PFC2D. , 2014, , 763-768.		3
29	System Reliability of Concrete Dams with Respect to Foundation Stability: Application to a Spillway. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 308-319.	3.0	30
30	System for concrete dam reliability with respect to foundation stability. , 2011, , 87-92.		0
31	Design Methodology for Grout Curtains Under Dams Founded on Rock. Geotechnical and Geological Engineering, 0, , 1.	1.7	0