David Margulies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6296329/publications.pdf Version: 2024-02-01

DAVID MARCHINES

#	Article	IF	CITATIONS
1	An Optical Probe for Real-Time Monitoring of Self-Replicator Emergence and Distinguishing between Replicators. Journal of the American Chemical Society, 2022, 144, 3074-3082.	13.7	4
2	Assessing changes in the expression levels of cell surface proteins with a turn-on fluorescent molecular probe. Chemical Communications, 2021, 57, 1875-1878.	4.1	8
3	Steps toward enhancing the fluorescence of small-molecule-based protein labels using supramolecular hosts. Results in Chemistry, 2021, 3, 100134.	2.0	1
4	Fluorescent Labelling of Cell Surface Proteins on a Solid Support. Israel Journal of Chemistry, 2021, 61, 239-243.	2.3	1
5	Broad Applications of Thiazole Orange in Fluorescent Sensing of Biomolecules and Ions. Molecules, 2021, 26, 2828.	3.8	27
6	Glycoform Differentiation by a Targeted, Self-Assembled, Pattern-Generating Protein Surface Sensor. Journal of the American Chemical Society, 2020, 142, 15790-15798.	13.7	16
7	Encrypting messages with artificial bacterial receptors. Beilstein Journal of Organic Chemistry, 2020, 16, 2749-2756.	2.2	3
8	Decorating bacteria with self-assembled synthetic receptors. Nature Communications, 2020, 11, 1299.	12.8	31
9	Molecular Logic as a Means to Assess Therapeutic Antidotes. Frontiers in Chemistry, 2019, 7, 243.	3.6	5
10	A Molecular Secret Sharing Scheme. Angewandte Chemie, 2019, 131, 190-194.	2.0	5
11	A Molecular Secret Sharing Scheme. Angewandte Chemie - International Edition, 2019, 58, 184-188.	13.8	26
12	Innenrücktitelbild: A Molecular Secret Sharing Scheme (Angew. Chem. 1/2019). Angewandte Chemie, 2019, 131, 355-355.	2.0	0
13	Analyzing Amyloid Beta Aggregates with a Combinatorial Fluorescent Molecular Sensor. Journal of the American Chemical Society, 2017, 139, 2136-2139.	13.7	115
14	Protein recognition by a pattern-generating fluorescent molecular probe. Nature Nanotechnology, 2017, 12, 1161-1168.	31.5	106
15	User Authorization at the Molecular Scale. ChemPhysChem, 2017, 18, 1678-1687.	2.1	33
16	Message in a molecule. Nature Communications, 2016, 7, 11374.	12.8	104
17	Mimicking the Function of Signaling Proteins: Toward Artificial Signal Transduction Therapy. Journal of Visualized Experiments, 2016, , .	0.3	0
18	Sensing Protein Surfaces with Targeted Fluorescent Receptors. Chemistry - A European Journal, 2015, 21, 15873-15873.	3.3	5

DAVID MARGULIES

#	Article	IF	CITATIONS
19	The Neuronal Migration Factor srGAP2 Achieves Specificity in Ligand Binding through a Two-Component Molecular Mechanism. Structure, 2015, 23, 1989-2000.	3.3	20
20	Sensing Protein Surfaces with Targeted Fluorescent Receptors. Chemistry - A European Journal, 2015, 21, 15981-15987.	3.3	20
21	Artificial signal transduction therapy: a futuristic approach to disease treatment. Future Medicinal Chemistry, 2015, 7, 2091-2093.	2.3	5
22	Protein–Protein Communication and Enzyme Activation Mediated by a Synthetic Chemical Transducer. Journal of the American Chemical Society, 2015, 137, 9507-9510.	13.7	42
23	Protein recognition by bivalent, â€~turn-on' fluorescent molecular probes. Chemical Science, 2015, 6, 5419-5425.	7.4	42
24	Enzymeâ``Artificial Enzyme Interactions as a Means for Discriminating among Structurally Similar Isozymes. Journal of the American Chemical Society, 2015, 137, 4892-4895.	13.7	28
25	Combinatorial Fluorescent Molecular Sensors: The Road to Differential Sensing at the Molecular Level. Synlett, 2014, 25, 1050-1054.	1.8	26
26	Targeted Protein Surface Sensors as a Tool for Analyzing Small Populations of Proteins in Biological Mixtures. Angewandte Chemie - International Edition, 2014, 53, 9289-9293.	13.8	69
27	Authorizing Multiple Chemical Passwords by a Combinatorial Molecular Keypad Lock. Journal of the American Chemical Society, 2013, 135, 15330-15333.	13.7	96
28	Rücktitelbild: Medication Detection by a Combinatorial Fluorescent Molecular Sensor (Angew. Chem.) Tj ETQc	0 0 0 rgB⁻ 2.0 rgB⁻	Г/Qverlock 1
29	Medication Detection by a Combinatorial Fluorescent Molecular Sensor. Angewandte Chemie - International Edition, 2012, 51, 12477-12481.	13.8	72
30	Combinatorial protein recognition as an alternative approach to antibody-mimetics. Current Opinion in Chemical Biology, 2010, 14, 705-712.	6.1	40
31	Surface Binding Inhibitors of the SCF–KIT Protein–Protein Interaction. ChemBioChem, 2009, 10, 1955-1958.	2.6	18
32	Protein Recognition by an Ensemble of Fluorescent DNA Gâ€Quadruplexes. Angewandte Chemie - International Edition, 2009, 48, 1771-1774.	13.8	79
33	Digital Analysis of Protein Properties by an Ensemble of DNA Quadruplexes. Journal of the American Chemical Society, 2009, 131, 9142-9143.	13.7	92
34	A Molecular Keypad Lock:Â A Photochemical Device Capable of Authorizing Password Entries. Journal of the American Chemical Society, 2007, 129, 347-354.	13.7	360
35	A Molecular Full-Adder and Full-Subtractor, an Additional Step toward a Moleculator. Journal of the American Chemical Society, 2006, 128, 4865-4871.	13.7	291
36	Fluorescein as a model molecular calculator with reset capability. Nature Materials, 2005, 4, 768-771.	27.5	247

#	Article	IF	CITATIONS
37	Chemical Input Multiplicity Facilitates Arithmetical Processing. Journal of the American Chemical Society, 2004, 126, 15400-15401.	13.7	158