Zhifeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6296308/publications.pdf Version: 2024-02-01

ZHIFFNC LUL

#	Article	IF	CITATIONS
1	Robust Dirac spin gapless semiconductors in a two-dimensional oxalate based organic honeycomb-kagome lattice. Nanoscale, 2022, 14, 2023-2029.	5.6	5
2	Cluster- and energy-separated extreme states in a synthesized superatomic solid. Physical Review B, 2022, 105, .	3.2	1
3	Intrinsic spin–valley-coupled Dirac state in Janus functionalized β-BiAs monolayer. Nanoscale Horizons, 2021, 6, 283-289.	8.0	9
4	MnNBr Monolayer: A Highâ€Temperature Ferromagnetic Halfâ€Metal with Typeâ€II Weyl Fermions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100115.	2.4	7
5	MnNBr Monolayer: A Highâ€Temperature Ferromagnetic Halfâ€Metal with Typeâ€II Weyl Fermions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2170027.	2.4	0
6	Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Applied Physics Reviews, 2021, 8, .	11.3	202
7	Strainâ€Induced Ideal Topological Semimetal in Ortâ€B ₃₂ Holding Parallel Arcâ€Like Nodal Lines and Anisotropic Multiple Weyl Fermions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100324.	2.4	0
8	Metallic subnanometer porous silicon: A theoretical prediction. Physical Review B, 2021, 103, .	3.2	13
9	T-C56: a low-density transparent superhard carbon allotrope assembled from C16 cage-like cluster. Journal of Physics Condensed Matter, 2020, 32, 165701.	1.8	6
10	Room temperature ferromagnetic half metal in Mn doped cluster-assembled sodalite phase of III-N compounds. Journal of Magnetism and Magnetic Materials, 2020, 499, 166295.	2.3	4
11	Palgraphyne: A Promising 2D Carbon Dirac Semimetal with Strong Mechanical and Electronic Anisotropy. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900670.	2.4	14
12	Three-dimensional borophene: A light-element topological nodal-line semimetal with direction-dependent type-II Weyl fermions. Physical Review B, 2020, 102, .	3.2	9
13	Palgraphyne: A Promising 2D Carbon Dirac Semimetal with Strong Mechanical and Electronic Anisotropy. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2070020.	2.4	4
14	Phase transition, magnetic and electronic properties of iron mononitride: First-principles calculations. Journal of Alloys and Compounds, 2019, 771, 322-326.	5.5	10
15	Two-dimensional spin–valley-coupled Dirac semimetals in functionalized SbAs monolayers. Materials Horizons, 2019, 6, 781-787.	12.2	38
16	All-Silicon Topological Semimetals with Closed Nodal Line. Journal of Physical Chemistry Letters, 2019, 10, 244-250.	4.6	24
17	Hexagonal M ₂ C ₃ (M = As, Sb, and Bi) monolayers: new functional materials with desirable band gaps and ultrahigh carrier mobility. Journal of Materials Chemistry C, 2018, 6, 12689-12697.	5.5	42
18	Cluster-Assembled Semiconductor CdO Polymorph with Good Ductility, High Carrier Mobility, and Promising Optical Properties. Journal of Physical Chemistry C, 2018, 122, 24287-24294.	3.1	6

Zhifeng Liu

#	Article	IF	CITATIONS
19	YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics. Nano Research, 2017, 10, 1972-1979.	10.4	120
20	Computational search for two-dimensional intrinsic half-metals in transition-metal dinitrides. Journal of Materials Chemistry C, 2017, 5, 727-732.	5.5	61
21	Design of superhalogens using a core–shell structure model. Nanoscale, 2017, 9, 18781-18787.	5.6	12
22	Room-Temperature Ordered Spin Structures in Cluster-Assembled Single V@Si ₁₂ Sheets. Journal of Physical Chemistry C, 2015, 119, 1517-1523.	3.1	50
23	A new diluted magnetic semiconductor based on the expanded phase of ZnS: surmounting the random distribution of magnetic impurities. Physical Chemistry Chemical Physics, 2015, 17, 13117-13122.	2.8	7
24	First-principle study on thermodynamic property of superhard BC ₂ N under extreme conditions. Journal of Materials Research, 2014, 29, 1326-1333.	2.6	0
25	First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure. Journal of Physics and Chemistry of Solids, 2014, 75, 662-669.	4.0	12
26	Enhancement of hydrogen binding affinity with low ionization energy Li 2 F coating on C 60 to improve hydrogen storage capacity. International Journal of Hydrogen Energy, 2014, 39, 15639-15645.	7.1	21
27	From the ZnO Hollow Cage Clusters to ZnO Nanoporous Phases: A First-Principles Bottom-Up Prediction. Journal of Physical Chemistry C, 2013, 117, 17633-17643.	3.1	45
28	Low-density nanoporous phases of group-III nitrides built from sodalite cage clusters. Physical Chemistry Chemical Physics, 2013, 15, 8186.	2.8	19
29	New nanomaterials based on In ₁₂ As ₁₂ cages: an ab initio bottom-up study. RSC Advances, 2013, 3, 1450-1459.	3.6	11
30	Structures, stabilities, and electronic properties of GaAs tubelike clusters and single-walled GaAs nanotubes. Chinese Physics B, 2012, 21, 123601.	1.4	3
31	Structures, stabilities and electronic properties of InAs double-walled tubelike clusters and nanotubes. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 243101.	0.5	0
32	Structures, Stabilities and Electronic Properties of InAs Tubelike Clusters and Single-Walled InAs Nanotubes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 2079-2087.	4.9	3
33	Structures and electronic properties of Mo _{2 <i>n</i>} N _{<i>n</i>} (<i>n</i>) Tj ETQ	q1 1 0.784	131 <u>4</u> rgBT /0