Zhifeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6296308/publications.pdf

Version: 2024-02-01

		758635	525886
33	763	12	27
papers	citations	h-index	g-index
34	34	34	752
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Applied Physics Reviews, 2021, 8, .	5 . 5	202
2	YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics. Nano Research, 2017, 10, 1972-1979.	5.8	120
3	Computational search for two-dimensional intrinsic half-metals in transition-metal dinitrides. Journal of Materials Chemistry C, 2017, 5, 727-732.	2.7	61
4	Room-Temperature Ordered Spin Structures in Cluster-Assembled Single V@Si ₁₂ Sheets. Journal of Physical Chemistry C, 2015, 119, 1517-1523.	1.5	50
5	From the ZnO Hollow Cage Clusters to ZnO Nanoporous Phases: A First-Principles Bottom-Up Prediction. Journal of Physical Chemistry C, 2013, 117, 17633-17643.	1.5	45
6	Hexagonal M ₂ C ₃ (M = As, Sb, and Bi) monolayers: new functional materials with desirable band gaps and ultrahigh carrier mobility. Journal of Materials Chemistry C, 2018, 6, 12689-12697.	2.7	42
7	Two-dimensional spin–valley-coupled Dirac semimetals in functionalized SbAs monolayers. Materials Horizons, 2019, 6, 781-787.	6.4	38
8	All-Silicon Topological Semimetals with Closed Nodal Line. Journal of Physical Chemistry Letters, 2019, 10, 244-250.	2.1	24
9	Enhancement of hydrogen binding affinity with low ionization energy Li 2 F coating on C 60 to improve hydrogen storage capacity. International Journal of Hydrogen Energy, 2014, 39, 15639-15645.	3.8	21
10	Low-density nanoporous phases of group-III nitrides built from sodalite cage clusters. Physical Chemistry Chemical Physics, 2013, 15, 8186.	1.3	19
11	Palgraphyne: A Promising 2D Carbon Dirac Semimetal with Strong Mechanical and Electronic Anisotropy. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900670.	1.2	14
12	Metallic subnanometer porous silicon: A theoretical prediction. Physical Review B, 2021, 103, .	1.1	13
13	First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure. Journal of Physics and Chemistry of Solids, 2014, 75, 662-669.	1.9	12
14	Design of superhalogens using a core–shell structure model. Nanoscale, 2017, 9, 18781-18787.	2.8	12
15	New nanomaterials based on In ₁₂ As ₁₂ cages: an ab initio bottom-up study. RSC Advances, 2013, 3, 1450-1459.	1.7	11
16	Phase transition, magnetic and electronic properties of iron mononitride: First-principles calculations. Journal of Alloys and Compounds, 2019, 771, 322-326.	2.8	10
17	Three-dimensional borophene: A light-element topological nodal-line semimetal with direction-dependent type-II Weyl fermions. Physical Review B, 2020, 102, .	1.1	9
18	Intrinsic spin–valley-coupled Dirac state in Janus functionalized β-BiAs monolayer. Nanoscale Horizons, 2021, 6, 283-289.	4.1	9

#	Article	IF	CITATIONS
19	A new diluted magnetic semiconductor based on the expanded phase of ZnS: surmounting the random distribution of magnetic impurities. Physical Chemistry Chemical Physics, 2015, 17, 13117-13122.	1.3	7
20	MnNBr Monolayer: A Highâ€Temperature Ferromagnetic Halfâ€Metal with Typeâ€N Weyl Fermions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100115.	1.2	7
21	Cluster-Assembled Semiconductor CdO Polymorph with Good Ductility, High Carrier Mobility, and Promising Optical Properties. Journal of Physical Chemistry C, 2018, 122, 24287-24294.	1.5	6
22	T-C56: a low-density transparent superhard carbon allotrope assembled from C16 cage-like cluster. Journal of Physics Condensed Matter, 2020, 32, 165701.	0.7	6
23	Structures and electronic properties of Mo _{2 <i>n</i>} N _{<i>n</i>} (<i>n</i>) Tj ETQq1	b.9.7843	1 <u>4</u> rgBT /0\
24	Robust Dirac spin gapless semiconductors in a two-dimensional oxalate based organic honeycomb-kagome lattice. Nanoscale, 2022, 14, 2023-2029.	2.8	5
25	Room temperature ferromagnetic half metal in Mn doped cluster-assembled sodalite phase of III-N compounds. Journal of Magnetism and Magnetic Materials, 2020, 499, 166295.	1.0	4
26	Palgraphyne: A Promising 2D Carbon Dirac Semimetal with Strong Mechanical and Electronic Anisotropy. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2070020.	1.2	4
27	Structures, stabilities, and electronic properties of GaAs tubelike clusters and single-walled GaAs nanotubes. Chinese Physics B, 2012, 21, 123601.	0.7	3
28	Structures, Stabilities and Electronic Properties of InAs Tubelike Clusters and Single-Walled InAs Nanotubes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 2079-2087.	2.2	3
29	Cluster- and energy-separated extreme states in a synthesized superatomic solid. Physical Review B, 2022, 105, .	1.1	1
30	First-principle study on thermodynamic property of superhard BC ₂ N under extreme conditions. Journal of Materials Research, 2014, 29, 1326-1333.	1.2	0
31	MnNBr Monolayer: A Highâ€Temperature Ferromagnetic Halfâ€Metal with Typeâ€N Weyl Fermions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2170027.	1.2	O
32	Strainâ€Induced Ideal Topological Semimetal in Ortâ€B ₃₂ Holding Parallel Arcâ€Like Nodal Lines and Anisotropic Multiple Weyl Fermions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100324.	1.2	O
33	Structures, stabilities and electronic properties of InAs double-walled tubelike clusters and nanotubes. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 243101.	0.2	0