
Carlos DÃ-az-Guerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6296283/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Obtaining and Characterization of Highly Crystalline Recycled Graphites from Different Types of Spent Batteries. Materials, 2022, 15, 3246.	1.3	4
2	Anisotropy of the Electric Field Gradient in Two-Dimensional α-MoO3 Investigated by 57Mn(57Fe) Emission Mössbauer Spectroscopy. Crystals, 2022, 12, 942.	1.0	2
3	Synthesis, characterization and electrochemical assessment of hexagonal molybdenum trioxide (h-MoO3) micro-composites with graphite, graphene and graphene oxide for lithium ion batteries. Electrochimica Acta, 2021, 365, 137355.	2.6	29
4	h-MoO3/AlCl3-Urea/Al: High performance and low-cost rechargeable Al-ion battery. Journal of Power Sources, 2021, 516, 230656.	4.0	13
5	Estimating the uncertainties of strain and damage analysis by X-ray diffraction in ion implanted MoO3. Nuclear Instruments & Methods in Physics Research B, 2020, 478, 290-296.	0.6	1
6	Femtosecond Double-Pulse Laser Ablation and Deposition of Co-Doped ZnS Thin Films. Nanomaterials, 2020, 10, 2229.	1.9	10
7	Influence of the synthesis conditions of Y0.9Dy0.1VO4 and silica-coated Y0.9Dy0.1VO4 nanophosphors on the powder morphology and luminescence emission intensity. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	7
8	Engineering strain and conductivity of MoO3 by ion implantation. Acta Materialia, 2019, 169, 15-27.	3.8	19
9	Electrical characterization of molybdenum oxide lamellar crystals irradiated with UV light and proton beams. Surface and Coatings Technology, 2018, 355, 50-54.	2.2	5
10	<i>In situ</i> local assessment of laser irradiation-induced phase transformations in hexagonal MoO ₃ microrods. CrystEngComm, 2018, 20, 4954-4961.	1.3	9
11	Spatially resolved optical activation of Eu ions by laser irradiation in implanted hexagonal MoO3 microrods. Applied Physics Letters, 2018, 113, 031902.	1.5	4
12	Correlation of Electrical Response and Structural Phase Transitions in Bi ₂ O ₃ Nanowires. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800186.	0.8	3
13	Effects of thermal annealing on the structural and electronic properties of rare earth-implanted MoO ₃ nanoplates. CrystEngComm, 2017, 19, 2339-2348.	1.3	6
14	Assessing Oxygen Vacancies in Bismuth Oxide through EELS Measurements and DFT Simulations. Journal of Physical Chemistry C, 2017, 121, 24809-24815.	1.5	23
15	Thermal growth, structural and optical characterization of hierarchical Bi2O3 - MoO3 nanostructures. Journal of Alloys and Compounds, 2017, 728, 827-835.	2.8	4
16	Formation of β-Bi2O3 and δ-Bi2O3 during laser irradiation of Bi films studied in-situ by spatially resolved Raman spectroscopy. Journal of Alloys and Compounds, 2017, 723, 520-526.	2.8	65
17	Comparative study of Y0.9Er0.1V1â^'xPxO4 nanophosphors with xÂ=Â0, 0.1, 0.5, 0.9 and 1 prepared by sol-gel and hydrothermal processes. Journal of Alloys and Compounds, 2016, 687, 754-764.	2.8	5
18	Preparation of Ca _{0.5} Zr ₂ (PO ₄) ₃ and Ca _{0.45} Eu _{0.05} Zr ₂ (PO ₄) ₃ nanopowders: structural characterization and luminescence emission study. Journal Physics D: Applied Physics, 2016, 49, 115501.	1.3	9

#	Article	IF	CITATIONS
19	Effects of preparation method and pH variation on the structural characteristics and luminescence properties of Y0.9Er0.1VO4 and Y0.9Er0.1V0.9Cr0.1O4 nanopowders. Journal of Luminescence, 2015, 165, 105-114.	1.5	12
20	Growth, structure, luminescence and mechanical resonance of Bi ₂ O ₃ nano- and microwires. CrystEngComm, 2015, 17, 132-139.	1.3	12
21	Intense luminescence emission from rare-earth-doped MoO3nanoplates and lamellar crystals for optoelectronic applications. Journal Physics D: Applied Physics, 2014, 47, 355105.	1.3	28
22	Effect of synthesis conditions on the structural characteristics and luminescence properties of Y0.9Eu0.1V1â^'xCrxO4 (0Ââ‰ÂxÂâ‰Â0.5) nanopowders. Materials Chemistry and Physics, 2014, 145, 18-26.	2.0	12
23	Structural and luminescence properties of Eu and Er implanted Bi2O3 nanowires for optoelectronic applications. Journal of Materials Chemistry C, 2013, 1, 7920.	2.7	38
24	α-Bi2O3 microcrystals and microrods: Thermal synthesis, structural and luminescence properties. Journal of Alloys and Compounds, 2013, 548, 188-193.	2.8	50
25	Influence of chromium content on the optical and electrical properties of Li1+xCrxTi2â^'x(PO4)3. Solid State Ionics, 2013, 241, 36-45.	1.3	26
26	Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires. Applied Physics Letters, 2012, 101, 071905.	1.5	40
27	Luminescence and Raman study of α-Bi2O3 ceramics. Materials Chemistry and Physics, 2012, 133, 559-564.	2.0	64
28	Structural and cathodoluminiscent properties of Zr0.95Ce0.05O2 nanopowders prepared by sol–gel and template methods. Journal of Luminescence, 2011, 131, 2128-2132.	1.5	6
29	Growth, structure and luminescence properties of electrodeposited and post-oxidized Co oxide nanowires. Materials Chemistry and Physics, 2010, 124, 1177-1181.	2.0	5
30	Exchange bias in single-crystalline CuO nanowires. Applied Physics Letters, 2010, 96, .	1.5	52
31	Optical and magnetic properties of CuO nanowires grown by thermal oxidation. Journal Physics D: Applied Physics, 2010, 43, 135403.	1.3	53
32	Synthesis and Cathodoluminescence of Undoped and Cr ³⁺ -Doped Sodium Titanate Nanotubes and Nanoribbons. Journal of Physical Chemistry C, 2010, 114, 8192-8198.	1.5	15
33	Cathodoluminescence mapping and spectroscopy of Te-doped grown by the vertical Bridgman method under an alternating magnetic field. Superlattices and Microstructures, 2009, 45, 407-412.	1.4	2
34	Structural and cathodoluminescence assessment of transition metal oxide nanostructures grown by thermal deposition methods. Superlattices and Microstructures, 2009, 45, 145-150.	1.4	4
35	Magnetic transitions in \hat{I}_{\pm} -Fe2O3 nanowires. Journal of Applied Physics, 2009, 106, .	1.1	21
36	Structural, magnetic and luminescent characteristics of Pr ³⁺ -doped ZrO ₂ powders synthesized by a sol–gel method. Journal Physics D: Applied Physics, 2009, 42, 075418.	1.3	36

CARLOS DÃAZ-GUERRA

#	Article	IF	CITATIONS
37	Thermal Deposition Growth and Luminescence Properties of Single-Crystalline V ₂ O ₅ Elongated Nanostructures. Crystal Growth and Design, 2008, 8, 1031-1034.	1.4	48
38	Shape-controlled synthesis and cathodoluminescence properties of elongated α-Fe2O3 nanostructures. Journal of Applied Physics, 2008, 104, 124311.	1.1	12
39	Influence of doping level on the cathodoluminescence of Se-doped GaSb crystals. Journal Physics D: Applied Physics, 2007, 40, 137-143.	1.3	8
40	Structural and cathodoluminescence assessment of V2O5 nanowires and nanotips grown by thermal deposition. Journal of Applied Physics, 2007, 102, 084307.	1.1	17
41	Growth of Ga(1â^x)InxSb alloys by Vertical Bridgman technique under alternating magnetic field. Journal of Crystal Growth, 2006, 287, 224-229.	0.7	28
42	Characterization of undoped and Te-doped GaSb crystals grown by the vertical feeding method. Journal of Crystal Growth, 2006, 289, 18-23.	0.7	9
43	Solidification features of cast and vertically fed Te-doped GaSb materials. Journal of Crystal Growth, 2006, 293, 285-290.	0.7	1
44	Cathodoluminescence microscopy and spectroscopy of GaN epilayers microstructured using surface charge lithography. Journal of Applied Physics, 2006, 100, 023509.	1.1	6
45	Synthesis and characterisation of GaSb and GaInSb feed materials. Journal of Crystal Growth, 2005, 275, e601-e607.	0.7	5
46	Study of defects in InxGa1-xSb bulk crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1897-1901.	0.8	0
47	Spatially resolved cathodoluminescence of GaN nanostructures fabricated by photoelectrochemical etching. Applied Physics Letters, 2005, 86, 223103.	1.5	15
48	Cathodoluminescence study of the radiative recombination properties of Se-doped GaSb crystals. Journal of Applied Physics, 2005, 97, 023504.	1.1	3
49	Cathodoluminescence microscopy and spectroscopy of n-type 4H-SiC epilayers. EPJ Applied Physics, 2004, 27, 227-230.	0.3	4
50	Electron-beam-induced current study of electrically active defects in 4H-SiC. Journal of Physics Condensed Matter, 2004, 16, S217-S223.	0.7	13
51	Luminescence from indented Te-doped GaSb crystals. Semiconductor Science and Technology, 2004, 19, 490-493.	1.0	9
52	Scanning tunneling spectroscopy study of silicon and platinum assemblies in an opal matrix. Applied Physics Letters, 2000, 77, 3194-3196.	1.5	14
53	Electron beam induced current and scanning tunnelling spectroscopy correlative study of and CdTe crystals. Semiconductor Science and Technology, 1998, 13, 576-582.	1.0	13
54	Structural and composition changes in superconducting ceramics locally irradiated by electrons. Physics of the Solid State, 1997, 39, 392-396.	0.2	3

#	Article	IF	CITATIONS
55	Electron beam induced structural changes in Bi 2 Sr 2 CaCu 2 O 8+x studied by cathodoluminescence microscopy and secondary electron emission. Applied Physics A: Materials Science and Processing, 1997, 64, 361-366.	1.1	2
56	Cathodoluminescence microscopy and spectroscopy of superconducting Bi2Sr2CaCu2O8+x single crystals. Physica C: Superconductivity and Its Applications, 1997, 275, 37-46.	0.6	9
57	Anomalies in the cathodoluminescence of the antiferromagnetic oxides NiO and CoO. Solid State Communications, 1997, 104, 763-766.	0.9	8
58	Cathodoluminescence and photoluminescence studies of sintered BaCuO2. Journal of Luminescence, 1997, 71, 299-304.	1.5	1
59	Cathodoluminescence and Photoluminescence Spectroscopy of NiO. Physica Status Solidi A, 1997, 163, 497-503.	1.7	55
60	Cathodoluminescence microscopy of superconducting and non-superconducting Tl2Ba2CuO6+l̂´ polycrystals. Physica C: Superconductivity and Its Applications, 1996, 259, 121-130.	0.6	7
61	Cathodoluminescence Microscopy and Secondary Electron Emission in Mechanically Polished and Electron Irradiated YBa2Cu3O7â^'x Ceramics. Physica Status Solidi A, 1996, 155, 525-539.	1.7	1
62	Electron beam induced compositional and structural changes in. Superconductor Science and Technology, 1996, 9, 766-774.	1.8	0
63	Deep Level Cathodoluminescence in Deformed CdTe Crystals. Physica Status Solidi A, 1995, 147, 75-80.	1.7	6