Vitaliy O Kaminskyy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6296232/publications.pdf

Version: 2024-02-01

36 papers 9,537 citations

304368 22 h-index 344852 36 g-index

36 all docs 36 docs citations

36 times ranked

22475 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Free Radicals in Cross Talk Between Autophagy and Apoptosis. Antioxidants and Redox Signaling, 2014, 21, 86-102.	2.5	329
4	Proteases in autophagy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 44-50.	1.1	157
5	Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation. Autophagy, 2012, 8, 1032-1044.	4.3	149
6	To kill or be killed: how viruses interact with the cell death machinery. Journal of Internal Medicine, 2010, 267, 473-482.	2.7	84
7	S100A4 interacts with p53 in the nucleus and promotes p53 degradation. Oncogene, 2013, 32, 5531-5540.	2.6	77
8	Targeted Deletion of Autophagy Genes Atg5 or Atg7 in the Chondrocytes Promotes Caspase-Dependent Cell Death and Leads to Mild Growth Retardation. Journal of Bone and Mineral Research, 2015, 30, 2249-2261.	3.1	75
9	Combined inhibition of DNA methyltransferase and histone deacetylase restores caspase-8 expression and sensitizes SCLC cells to TRAIL. Carcinogenesis, 2011, 32, 1450-1458.	1.3	72
10	A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle. Autophagy, 2011, 7, 83-90.	4.3	65
11	Autophagy in Toxicology: Cause or Consequence?. Annual Review of Pharmacology and Toxicology, 2013, 53, 275-297.	4.2	64
12	Differential effect of sanguinarine, chelerythrine and chelidonine on DNA damage and cell viability in primary mouse spleen cells and mouse leukemic cells. Cell Biology International, 2008, 32, 271-277.	1.4	58
13	Doxorubicin sensitizes human tumor cells to NK cell―and Tâ€cellâ€mediated killing by augmented TRAIL receptor signaling. International Journal of Cancer, 2013, 133, 1643-1652.	2.3	54
14	A decisive role of mitochondria in defining rate and intensity of apoptosis induction by different alkaloids. Toxicology Letters, 2008, 177, 168-181.	0.4	53
15	Apoptogenic activity of two benzophenanthridine alkaloids from Chelidonium majus L. does not correlate with their DNA damaging effects. Toxicology in Vitro, 2008, 22, 287-295.	1.1	48
16	Human Anaplastic Thyroid Carcinoma Cells Are Sensitive to NK Cell–Mediated Lysis via ULBP2/5/6 and Chemoattract NK Cells. Clinical Cancer Research, 2014, 20, 5733-5744.	3.2	47
17	Correlation of the cytotoxic activity of four different alkaloids, from Chelidonium majus (greater) Tj ETQq1 1 0.7 murine lymphoma cells. Open Life Sciences, 2006, 1, 2-15.	'84314 rgE 0.6	3T /Overlock 1 36
18	Inhibition of the mitochondrial pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase by doxorubicin and brequinar sensitizes cancer cells to TRAIL-induced apoptosis. Oncogene, 2014, 33, 3538-3549.	2.6	34

#	Article	IF	CITATIONS
19	Doxorubicin and etoposide sensitize small cell lung carcinoma cells expressing caspase-8 to TRAIL. Molecular Cancer, 2010, 9, 87.	7.9	33
20	Involvement of autophagy in the outcome of mitotic catastrophe. Scientific Reports, 2017, 7, 14571.	1.6	31
21	Suppressed translation and ULK1 degradation as potential mechanisms of autophagy limitation under prolonged starvation. Autophagy, 2016, 12, 2085-2097.	4.3	29
22	Sec-containing TrxR1 is essential for self-sufficiency of cells by control of glucose-derived H2O2. Cell Death and Disease, 2014, 5, e1235-e1235.	2.7	25
23	Upregulation of c-FLIP-short in response to TRAIL promotes survival of NSCLC cells, which could be suppressed by inhibition of Ca2+/calmodulin signaling. Cell Death and Disease, 2013, 4, e522-e522.	2.7	24
24	Inhibition of Ephrin B3-mediated survival signaling contributes to increased cell death response of non-small cell lung carcinoma cells after combined treatment with ionizing radiation and PKC 412. Cell Death and Disease, 2013, 4, e454-e454.	2.7	23
25	Structural characterization, solution stability, and potential health and environmental effects of the Nano-TiO2 bioencapsulation matrix and the model product of its biodegradation TiBALDH. RSC Advances, 2012, 2, 4228.	1.7	21
26	Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget, 2016, 7, 60332-60347.	0.8	20
27	In vivo expression and characteristics of novel $\hat{l}\pm$ mannose-rich glycoprotein markers of apoptotic cells. Cell Biology International, 2005, 29, 920-928.	1.4	18
28	Suppressed translation as a mechanism of initiation of CASP8 (caspase 8)-dependent apoptosis in autophagy-deficient NSCLC cells under nutrient limitation. Autophagy, 2018, 14, 252-268.	4.3	18
29	Detection of Tumor-Associated Membrane Receptors on Extracellular Vesicles from Non-Small Cell Lung Cancer Patients via Immuno-PCR. Cancers, 2021, 13, 922.	1.7	15
30	Cell death-based treatment of various diseases: a fifty-year journey. Cell Death and Disease, 2018, 9, 110.	2.7	12
31	Receptor-Mediated Mitophagy Rescues Cancer Cells under Hypoxic Conditions. Cancers, 2021, 13, 4027.	1.7	11
32	Multiplexed electrokinetic sensor for detection and therapy monitoring of extracellular vesicles from liquid biopsies of non-small-cell lung cancer patients. Biosensors and Bioelectronics, 2021, 193, 113568.	5.3	10
33	EPHA2 Interacts with DNA-PKcs in Cell Nucleus and Controls Ionizing Radiation Responses in Non-Small Cell Lung Cancer Cells. Cancers, 2021, 13, 1010.	1.7	8
34	Multiplex immune protein profiling of fineâ€needle aspirates from patients with nonâ€smallâ€cell lung cancer reveals signatures associated with PDâ€L1 expression and tumor stage. Molecular Oncology, 2021, 15, 2941-2957.	2.1	8
35	Necroptosis as a Novel Facet of Mitotic Catastrophe. International Journal of Molecular Sciences, 2022, 23, 3733.	1.8	4
36	A Quantitative Flow Cytometry–Based Method for Autophagy Detection Across the Cell Cycle. Methods in Molecular Biology, 2022, 2445, 65-74.	0.4	2