Tong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6296151/publications.pdf Version: 2024-02-01

ΤΟΝΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review. Environmental Science & Technology, 2013, 47, 2441-2456.	10.0	539
2	Aging Significantly Affects Mobility and Contaminant-Mobilizing Ability of Nanoplastics in Saturated Loamy Sand. Environmental Science & Technology, 2019, 53, 5805-5815.	10.0	258
3	Widespread Production of Extracellular Superoxide by Heterotrophic Bacteria. Science, 2013, 340, 1223-1226.	12.6	236
4	Methylation of Mercury by Bacteria Exposed to Dissolved, Nanoparticulate, and Microparticulate Mercuric Sulfides. Environmental Science & Technology, 2012, 46, 6950-6958.	10.0	208
5	Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nature Geoscience, 2010, 3, 473-476.	12.9	171
6	Net Methylation of Mercury in Estuarine Sediment Microcosms Amended with Dissolved, Nanoparticulate, and Microparticulate Mercuric Sulfides. Environmental Science & Technology, 2014, 48, 9133-9141.	10.0	97
7	Incorporating bioaccessibility into health risk assessment of heavy metals in particulate matter originated from different sources of atmospheric pollution. Environmental Pollution, 2019, 254, 113113.	7.5	81
8	Removal of arsenic from water using multifunctional micro-/nano-structured MnO2 spheres and microfiltration. Chemical Engineering Journal, 2013, 225, 271-279.	12.7	74
9	Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Science of the Total Environment, 2020, 714, 136827.	8.0	69
10	Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter: Structural properties, aggregation, and biotransformation. Geochimica Et Cosmochimica Acta, 2014, 133, 204-215.	3.9	67
11	<i>In situ</i> remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6, 1283-1302.	4.3	65
12	Facet-Dependent Adsorption and Fractionation of Natural Organic Matter on Crystalline Metal Oxide Nanoparticles. Environmental Science & Technology, 2020, 54, 8622-8631.	10.0	54
13	Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants. Nature Communications, 2021, 12, 5398.	12.8	49
14	Mercury biogeochemical cycling: A synthesis of recent scientific advances. Science of the Total Environment, 2020, 737, 139619.	8.0	48
15	Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna. Nature Communications, 2020, 11, 3389.	12.8	46
16	Enhanced Hydrolysis of <i>p</i> -Nitrophenyl Phosphate by Iron (Hydr)oxide Nanoparticles: Roles of Exposed Facets. Environmental Science & Technology, 2020, 54, 8658-8667.	10.0	42
17	Sulfide induces physical damages and chemical transformation of microplastics via radical oxidation and sulfide addition. Water Research, 2021, 197, 117100.	11.3	40
18	Aggregation morphology is a key factor determining protein adsorption on graphene oxide and reduced graphene oxide nanomaterials. Environmental Science: Nano, 2019, 6, 1303-1309.	4.3	38

TONG ZHANG

#	Article	IF	CITATIONS
19	Bioaccumulation kinetics and tissue distribution of silver nanoparticles in zebrafish: The mechanisms and influence of natural organic matter. Ecotoxicology and Environmental Safety, 2020, 194, 110454.	6.0	36
20	Microbial methylation potential of mercury sulfide particles dictated by surface structure. Nature Geoscience, 2021, 14, 409-416.	12.9	36
21	Influence of light wavelength on the photoactivity, physicochemical transformation, and fate of graphene oxide in aqueous media. Environmental Science: Nano, 2018, 5, 2590-2603.	4.3	34
22	Occurrence and trophic transfer of nanoparticulate Ag and Ti in the natural aquatic food web of Taihu Lake, China. Environmental Science: Nano, 2019, 6, 3431-3441.	4.3	34
23	Nanocrystal facet modulation to enhance transferrin binding and cellular delivery. Nature Communications, 2020, 11, 1262.	12.8	33
24	Effects of Extracellular Polymeric Substances on the Formation and Methylation of Mercury Sulfide Nanoparticles. Environmental Science & Technology, 2020, 54, 8061-8071.	10.0	28
25	Effects of ozone and produced hydroxyl radicals on the transformation of graphene oxide in aqueous media. Environmental Science: Nano, 2019, 6, 2484-2494.	4.3	27
26	The underappreciated role of natural organic matter bond Hg(II) and nanoparticulate HgS as substrates for methylation in paddy soils across a Hg concentration gradient. Environmental Pollution, 2022, 292, 118321.	7.5	21
27	Sulfidation of Ag and ZnO Nanomaterials Significantly Affects Protein Corona Composition: Implications for Human Exposure to Environmentally Aged Nanomaterials. Environmental Science & Technology, 2019, 53, 14296-14307.	10.0	20
28	Effects of ion species on the disinfection byproduct formation in artificial and real water. Chemosphere, 2019, 217, 706-714.	8.2	19
29	Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. Environmental Science & amp; Technology, 2022, 56, 7426-7447.	10.0	19
30	Application of Iron-Based Materials for Remediation of Mercury in Water and Soil. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 721-729.	2.7	18
31	FcÎ ³ RIIB receptor-mediated apoptosis in macrophages through interplay of cadmium sulfide nanomaterials and protein corona. Ecotoxicology and Environmental Safety, 2018, 164, 140-148.	6.0	15
32	Nano-TiO ₂ -Catalyzed Dehydrochlorination of 1,1,2,2-Tetrachloroethane: Roles of Crystalline Phase and Exposed Facets. Environmental Science & Technology, 2018, 52, 4031-4039.	10.0	14
33	Insights into the lower trophic transfer of silver ions than silver containing nanoparticles along an aquatic food chain. Science of the Total Environment, 2022, 804, 150228.	8.0	14
34	Photolysis of graphene oxide in the presence of nitrate: implications for graphene oxide integrity in water and wastewater treatment. Environmental Science: Nano, 2019, 6, 136-145.	4.3	11
35	Legacy source of mercury in an urban stream–wetland ecosystem in central North Carolina, USA. Chemosphere, 2015, 138, 960-965.	8.2	9
36	Sulfide and ferrous iron preferentially target specific surface O-functional groups of graphene oxide: implications for accumulation of contaminants. Environmental Science: Nano, 2020, 7, 462-471.	4.3	7

TONG ZHANG

#	Article	IF	CITATIONS
37	Nanostructured manganese oxides exhibit facet-dependent oxidation capabilities. Environmental Science: Nano, 2020, 7, 3840-3848.	4.3	7
38	Natural organic matter facilitates formation and microbial methylation of mercury selenide nanoparticles. Environmental Science: Nano, 2021, 8, 67-75.	4.3	7
39	Targeting specific cell organelles with different-faceted nanocrystals that are selectively recognized by organelle-targeting peptides. Chemical Communications, 2020, 56, 7613-7616.	4.1	6
40	Substoichiometric titanium oxide Ti2O3 exhibits greater efficiency in enhancing hydrolysis of 1,1,2,2-tetrachloroethane than TiO2 nanomaterials. Science of the Total Environment, 2021, 774, 145705.	8.0	6