Sohini Kar-Narayan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6296046/publications.pdf

Version: 2024-02-01

86 papers 4,861 citations

34 h-index 95083 68 g-index

87 all docs

87 docs citations

87 times ranked

5182 citing authors

#	Article	IF	CITATIONS
1	Piezoelectric polymers: theory, challenges and opportunities. International Materials Reviews, 2022, 67, 65-88.	9.4	103
2	3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis. Nature Materials, 2022, 21, 811-818.	13.3	48
3	Conformable and robust microfluidic force sensors to enable precision joint replacement surgery. Materials and Design, 2022, 219, 110747.	3.3	4
4	Aerosol Jet Printing as a Versatile Sample Preparation Method for <i>Operando</i> Electrochemical TEM Microdevices. Advanced Materials Interfaces, 2022, 9, .	1.9	1
5	FullyPrinted Flexible Plasmonic Metafilms with Directional Color Dynamics. Advanced Science, 2021, 8, 2002419.	5.6	20
6	Route to High-Performance Micro-solid Oxide Fuel Cells on Metallic Substrates. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4117-4125.	4.0	9
7	Materialsâ€Related Strategies for Highly Efficient Triboelectric Energy Generators. Advanced Energy Materials, 2021, 11, 2003802.	10.2	73
8	Large electrocaloric effect in lead-free ferroelectric Ba0.85Ca0.15Ti0.9Zr0.1O3 thin film heterostructure. APL Materials, 2021, 9, .	2.2	16
9	Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications. ACS Applied Materials & Smart Textile Applications. ACS Applied Materials & Smart Textile Applications. ACS Applied Materials & Smart Textile Applications.	4.0	59
10	Surface Potential Driven Water Harvesting from Fog. ACS Nano, 2021, 15, 8848-8859.	7.3	40
11	Aerosol-jet-printed, conformable microfluidic force sensors. Cell Reports Physical Science, 2021, 2, 100386.	2.8	17
12	Tailoring the triboelectric output of poly-L-lactic acid nanotubes through control of polymer crystallinity. JPhys Materials, 2021, 4, 034010.	1.8	8
13	Role of oxygen vacancies on the low-temperature dielectric relaxor behavior in epitaxial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:m .<="" 2021,="" 5,="" materials,="" mathvariant.="" physical="" review="" td=""><td>row9 < mm</td><td>າໄ:ສາກ>0.85<!--</td--></td></mml:m></mml:msub></mml:mrow></mml:math>	r ow9 < mm	າໄ: ສ າກ>0.85 </td
14	Compositionally Graded Organic–Inorganic Nanocomposites for Enhanced Thermoelectric Performance. Advanced Electronic Materials, 2020, 6, 1900720.	2.6	15
15	Biosensors Based on Mechanical and Electrical Detection Techniques. Sensors, 2020, 20, 5605.	2.1	55
16	Enhanced piezoelectricity and electromechanical efficiency in semiconducting GaN due to nanoscale porosity. Applied Materials Today, 2020, 21, 100858.	2.3	10
17	Nylonâ€11 nanowires for triboelectric energy harvesting. EcoMat, 2020, 2, e12063.	6.8	27
18	Electro-responsive surfaces with controllable wrinkling patterns for switchable light reflection–diffusion–grating devices. Materials Today, 2020, 41, 51-61.	8.3	10

#	Article	IF	CITATIONS
19	Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisation. Nanotechnology, 2020, 31, 404003.	1.3	11
20	Unprecedented dipole alignment in $\hat{l}\pm$ -phase nylon-11 nanowires for high-performance energy-harvesting applications. Science Advances, 2020, 6, eaay 5065.	4.7	30
21	Poly- <scp>l</scp> -Lactic Acid Nanotubes as Soft Piezoelectric Interfaces for Biology: Controlling Cell Attachment <i>via</i> Polymer Crystallinity. ACS Applied Bio Materials, 2020, 3, 2140-2149.	2.3	27
22	Surface potential and roughness controlled cell adhesion and collagen formation in electrospun PCL fibers for bone regeneration. Materials and Design, 2020, 194, 108915.	3.3	112
23	Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13575-13583.	4.0	148
24	Manufacturing routes toward flexible and smart energy harvesters and sensors based on functional nanomaterials., 2020,, 381-437.		2
25	Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization. Applied Materials Today, 2020, 19, 100618.	2.3	22
26	Self-assembly of collagen bundles and enhanced piezoelectricity induced by chemical crosslinking. Nanoscale, 2019, 11, 15120-15130.	2.8	33
27	Strain-Mediated Bending of InP Nanowires through the Growth of an Asymmetric InAs Shell. Nanomaterials, 2019, 9, 1327.	1.9	8
28	Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systems. European Physical Journal: Special Topics, 2019, 228, 1537-1554.	1.2	66
29	Caloric Effects in Perovskite Oxides. Advanced Materials Interfaces, 2019, 6, 1900291.	1.9	66
30	Freestanding Functional Structures by Aerosolâ€Jet Printing for Stretchable Electronics and Sensing Applications. Advanced Materials Technologies, 2019, 4, 1900048.	3.0	42
31	Highly sensitive piezotronic pressure sensors based on undoped GaAs nanowire ensembles. Journal Physics D: Applied Physics, 2019, 52, 294002.	1.3	15
32	Coaxial Nickel–Poly(vinylidene fluoride trifluoroethylene) Nanowires for Magnetoelectric Applications. ACS Applied Nano Materials, 2019, 2, 170-179.	2.4	10
33	Surface potential tailoring of PMMA fibers by electrospinning for enhanced triboelectric performance. Nano Energy, 2019, 57, 500-506.	8.2	67
34	Aerosolâ€Jet Printed Fineâ€Featured Triboelectric Sensors for Motion Sensing. Advanced Materials Technologies, 2019, 4, 1800328.	3.0	38
35	Enhanced Molecular Alignment in Poly―l â€Lactic Acid Nanotubes Induced via Meltâ€Press Templateâ€Wetting. Macromolecular Materials and Engineering, 2019, 304, 1800607.	1.7	11
36	Piezoelectricity in non-nitride Ill–V nanowires: Challenges and opportunities. Journal of Materials Research, 2018, 33, 611-624.	1.2	10

#	Article	IF	Citations
37	Mechanical Energy Harvesting Performance of Ferroelectric Polymer Nanowires Grown via Templateâ€Wetting. Energy Technology, 2018, 6, 928-934.	1.8	20
38	Enhanced thermoelectric properties of flexible aerosol-jet printed carbon nanotube-based nanocomposites. APL Materials, 2018, 6, .	2.2	29
39	Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers. Nanoscale, 2018, 10, 16812-16821.	2.8	21
40	Fully Printed Organic–Inorganic Nanocomposites for Flexible Thermoelectric Applications. ACS Applied Materials & Diterfaces, 2018, 10, 19580-19587.	4.0	87
41	The effect of crystal structure on the electromechanical properties of piezoelectric Nylon-11 nanowires. Chemical Communications, 2018, 54, 6863-6866.	2.2	20
42	Piezoelectric Semiconducting Nanowires. Semiconductors and Semimetals, 2018, , 445-478.	0.4	6
43	Nanostructured polymer-based piezoelectric and triboelectric materials and devices for energy harvesting applications. Journal Physics D: Applied Physics, 2018, 51, 303001.	1.3	82
44	Controlling and assessing the quality of aerosol jet printed features for large area and flexible electronics. Flexible and Printed Electronics, 2017, 2, 015004.	1.5	121
45	Direct observation of shear piezoelectricity in poly- <scp>l</scp> -lactic acid nanowires. APL Materials, 2017, 5, .	2.2	44
46	Needs and Enabling Technologies for Stretchable Electronics Commercialization. MRS Advances, 2017, 2, 1721-1729.	0.5	11
47	Leadâ€Free Polycrystalline Ferroelectric Nanowires with Enhanced Curie Temperature. Advanced Functional Materials, 2017, 27, 1701169.	7.8	19
48	A triboelectric generator based on self-poled Nylon-11 nanowires fabricated by gas-flow assisted template wetting. Energy and Environmental Science, 2017, 10, 2180-2189.	15.6	91
49	Influence of the thermal contact resistance in current-induced domain wall depinning. Journal Physics D: Applied Physics, 2017, 50, 325001.	1.3	5
50	Exploring piezoelectric properties of Ill–V nanowires using piezo-response force microscopy. Semiconductor Science and Technology, 2017, 32, 074006.	1.0	18
51	Piezoelectric Nylonâ€11 Nanowire Arrays Grown by Template Wetting for Vibrational Energy Harvesting Applications. Advanced Functional Materials, 2017, 27, 1604262.	7.8	91
52	Mapping piezoelectric response in nanomaterials using a dedicated non-destructive scanning probe technique. Nanoscale, 2017, 9, 19290-19297.	2.8	23
53	Structure and Thermoelectric Properties of Bi2â°'xSbxTe3 Nanowires Grown in Flexible Nanoporous Polycarbonate Templates. Materials, 2017, 10, 553.	1.3	18
54	5th International Conference on Materials and Applications for Sensors and Transducers (IC-MAST2015). IOP Conference Series: Materials Science and Engineering, 2016, 108, 011001.	0.3	0

#	Article	IF	CITATIONS
55	Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting. Nanotechnology, 2016, 27, 28LT02.	1.3	33
56	Direct electrocaloric measurement of $0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3$ films using scanning thermal microscopy. Applied Physics Letters, 2016, 108, .	1.5	46
57	Tunnelling anisotropic magnetoresistance at La0.67Sr0.33MnO3-graphene interfaces. Applied Physics Letters, 2016, 108, 112405.	1.5	4
58	Localized electromechanical interactions in ferroelectric P(VDF-TrFE) nanowires investigated by scanning probe microscopy. APL Materials, 2016, 4, .	2.2	17
59	Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13678-13683.	4.0	69
60	Observation of Confinementâ€Induced Selfâ€Poling Effects in Ferroelectric Polymer Nanowires Grown by Template Wetting. Macromolecular Materials and Engineering, 2016, 301, 1016-1025.	1.7	32
61	Electroactive polymers for sensing. Interface Focus, 2016, 6, 20160026.	1.5	158
62	Energy harvesting performance of piezoelectric ceramic and polymer nanowires. Nanotechnology, 2015, 26, 344001.	1.3	47
63	A Scalable Nanogenerator Based on Selfâ€Poled Piezoelectric Polymer Nanowires with High Energy Conversion Efficiency. Advanced Energy Materials, 2014, 4, 1400519.	10.2	176
64	Finite-element optimisation of electrocaloric multilayer capacitors. Applied Physics Letters, 2014, 104, .	1.5	35
65	Nanogenerators: A Scalable Nanogenerator Based on Self-Poled Piezoelectric Polymer Nanowires with High Energy Conversion Efficiency (Adv. Energy Mater. 18/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	10.2	1
66	Caloric materials near ferroic phase transitions. Nature Materials, 2014, 13, 439-450.	13.3	1,129
67	Polymer-based nanopiezoelectric generators for energy harvesting applications. Materials Science and Technology, 2014, 30, 1613-1624.	0.8	57
68	The Electrocaloric Efficiency of Ceramic and Polymer Films. Advanced Materials, 2013, 25, 3337-3342.	11.1	123
69	Giant Electrocaloric Strength in Singleâ€Crystal BaTiO ₃ . Advanced Materials, 2013, 25, 1360-1365.	11.1	430
70	Electrocaloric Materials for Cooling Applications. Ferroelectrics, 2012, 433, 107-110.	0.3	12
71	PST thin films for electrocaloric coolers. Journal Physics D: Applied Physics, 2011, 44, 165407.	1.3	90

Linear anhysteretic direct magnetoelectric effect in Ni_{0.5}Zn_{0.5}Fe₂O₄/poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock.30 Tf 50897 Td (fluc

#	Article	IF	CITATIONS
73	Improper ferroelectricity in lawsonite CaAl2Si2O7(OH)2·H2O: hysteresis and hydrogen ordering. Journal of Physics Condensed Matter, 2011, 23, 222202.	0.7	6
74	Sliding charge-density waves in manganites. Nature Materials, 2010, 9, 688-688.	13.3	6
75	The absence of charge-density-wave sliding in epitaxial charge-ordered Pr _{0.48} Ca _{0.52} MnO ₃ films. Journal of Physics Condensed Matter, 2010, 22, 275602.	0.7	3
76	Eliminating the Temperature Dependence of the Response of Magnetoelectric Magnetic-Field Sensors. IEEE Sensors Journal, 2010, 10, 914-917.	2.4	21
77	Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials. Applied Physics Letters, 2009, 95, .	1.5	105
78	A fluctuation-based characterization of athermal phase transitions: Application to shape memory alloys. Acta Materialia, 2009, 57, 6113-6122.	3.8	10
79	Converse magnetoelectric coupling in multilayer capacitors. Applied Physics Letters, 2008, 93, .	1.5	28
80	Localized reversible nanoscale phase separation in Pr0.63Ca0.37MnO3 single crystal using a scanning tunneling microscope tip. Applied Physics Letters, 2007, 91, 143124.	1.5	4
81	Effect of Grain Boundaries on the Local Electronic Transport in Nanostructured Films of Colossal Magnetoresistive Manganites. Journal of Nanoscience and Nanotechnology, 2007, 7, 2051-2054.	0.9	4
82	Investigation of the Effect of Microstructure and Grain Boundaries in Nanostructured CMR Thin Films Using Scanning Tunneling Microscopy (STM) and Local Conductance Map (LCMAP). IEEE Nanotechnology Magazine, 2006, 5, 707-711.	1.1	5
83	Spatially resolved study of electronic transport through grain boundaries in nanostructured films ofLa0.67Sr0.33MnO3. Physical Review B, 2006, 74, .	1.1	13
84	Temperature dependence of the gap in the density of states near the Fermi level in a hole doped manganite. Solid State Communications, 2005, 136, 410-415.	0.9	2
85	Enhanced ferromagnetic transition temperature in nanocrystalline lanthanum calcium manganese oxide (La0.67Ca0.33MnO3). Solid State Communications, 2004, 129, 479-483.	0.9	103
86	Fabrication of ordered array of nanowires of La0.67Ca0.33MnO3 (x=0.33) in alumina templates with enhanced ferromagnetic transition temperature. Applied Physics Letters, 2004, 84, 993-995.	1.5	63