
Jun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6295479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organicâ^'Inorganic Nanocomposites via Directly Grafting Conjugated Polymers onto Quantum Dots. Journal of the American Chemical Society, 2007, 129, 12828-12833.	13.7	216
2	Organic heterojunction and its application for double channel field-effect transistors. Applied Physics Letters, 2005, 87, 093507.	3.3	174
3	Organic thin-film transistors in sandwich configuration. Applied Physics Letters, 2004, 84, 142-144.	3.3	118
4	Air-stable ambipolar organic field-effect transistors based on phthalocyanince composites heterojunction. Chemical Physics Letters, 2005, 407, 87-90.	2.6	63
5	Organic thin-film transistors having inorganic/organic double gate insulators. Applied Physics Letters, 2004, 85, 5424-5426.	3.3	41
6	Preparation of highly oriented copper phthalocyanine film by molecular templating effects for organic field-effect transistor. Organic Electronics, 2009, 10, 1097-1101.	2.6	19
7	A label-free, organic transistor-based biosensor by introducing electric bias during DNA immobilization. Organic Electronics, 2012, 13, 2781-2785.	2.6	18
8	High-performance organic field-effect transistors based on copper/copper sulphide bilayer source-drain electrodes. Applied Physics Letters, 2010, 97, 243303.	3.3	17
9	Preparing highly ordered copper phthalocyanine thin-film by controlling the thickness of the modified layer and its application in organic transistors. Solid-State Electronics, 2013, 89, 101-104.	1.4	16
10	The immobilization and electrical response of single-stranded DNA molecules on pentacene transistors. Applied Physics Letters, 2011, 99, .	3.3	11
11	The ultraviolet-ozone effects on organic thin-film transistors with double polymeric dielectric layers. Synthetic Metals, 2011, 161, 1635-1639.	3.9	10
12	The hybridization and optimization of complementary DNA molecules on organic field-effect transistors. Materials Science in Semiconductor Processing, 2015, 30, 250-254.	4.0	10
13	Inserting a Mn-doped TiO 2 layer for improving performance of pentacene organic thin-film transistors. Organic Electronics, 2014, 15, 3349-3353.	2.6	9
14	Highly improved charge injection in pentacene-based organic transistors by chemically doping with copper iodide interlayer. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700064.	1.8	9
15	Integrating organic light-emitting diode and field-effect-transistor in a single device. Organic Electronics, 2008, 9, 323-327.	2.6	7
16	The influences of substrate temperature on ambipolar organic heterojunction transistors. Thin Solid Films, 2010, 519, 439-442.	1.8	6
17	A label-free biosensor based on organic transistors by using the interaction of mercapto DNA and gold electrodes. Materials Science in Semiconductor Processing, 2015, 35, 127-131.	4.0	5
18	Selfâ€assembly of poly(3â€hexylthiophene) nanowire networks by a mixedâ€solvent approach for organic fieldâ€effect transistors. Physica Status Solidi - Rapid Research Letters, 2014, 8, 252-255.	2.4	4

Jun Wang

#	Article	IF	CITATIONS
19	Improved charge injection of pentacene transistors by immobilizing DNA on gold source-drain electrodes. Applied Physics A: Materials Science and Processing, 2014, 115, 759-763.	2.3	4
20	Fabricating organic transistors based on domainâ€ordered copper phthalocyanine film grown on oligothiophene epitaxial substrate. Physica Status Solidi - Rapid Research Letters, 2013, 7, 558-561.	2.4	3
21	High sensitivity and air stability in an organic transistor-based biosensor by inserting a CuPc layer. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2499-2502.	1.8	3
22	Improving organic field-effect transistors based on double active layers structure. Current Applied Physics, 2010, 10, 89-92.	2.4	2