Alexei Essiptchouk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6295233/publications.pdf

Version: 2024-02-01

840776 839539 48 370 11 18 g-index citations h-index papers 48 48 48 333 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Estudo do processamento de rejeitos radioativos sólidos compactáveis por plasma térmico/ Study of compactable solid radioactive waste processing by thermal plasma. Brazilian Applied Science Review, 2021, 5, 1795-1807.	0.1	O
2	Waste size and lay up sequence strategy for reusing/recycling carbon fiber fabric in laminate composite: Mechanical property analysis. Journal of Composite Materials, 2021, 55, 4221-4230.	2.4	6
3	Experimental study on treatment of simulated radioactive waste by thermal plasma: Temporal evaluation of stable Co and Cs. Annals of Nuclear Energy, 2021, 160, 108433.	1.8	5
4	High-velocity plasma spray process using hybrid $SiO2\hat{A}+\hat{A}ZrO2$ precursor for deposition of environmental barrier coatings. Surface and Coatings Technology, 2020, 404, 126447.	4.8	7
5	The use of syngas from biomedical waste plasma gasification systems for electricity production in internal combustion: Thermodynamic and economic issues. Energy, 2020, 199, 117419.	8.8	33
6	Plasma Treatment of Polyamide Fabric Surface by Hybrid Corona-Dielectric Barrier Discharge: Material Characterization and Dyeing/Washing Processes. Materials Research, 2020, 23, .	1.3	16
7	Hypersonic Plasma Setup for Oxidation Testing of Ultrahigh Temperature Ceramic Composites. Journal of Heat Transfer, 2020, 142, .	2.1	2
8	Glycerine degradation by submerged plasma. Journal Physics D: Applied Physics, 2019, 52, 465201.	2.8	1
9	Simulation of the Internal Structure of a Tandem-Type Plasmatron. Journal of Engineering Physics and Thermophysics, 2018, 91, 1550-1557.	0.6	1
10	Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy. Journal of Thermal Spray Technology, 2017, 26, 880-889.	3.1	16
11	Deposition of graded SiO2/SiC coatings using high-velocity solution plasma spray. Ceramics International, 2017, 43, 16416-16423.	4.8	15
12	Numerical Study of Particle Heating in a Plasma Jet. Journal of Engineering Physics and Thermophysics, 2017, 90, 397-404.	0.6	3
13	On the Internal Gas Dynamics and Efficiency of a Vortex Water-Vapor Plasma Generator. Journal of Engineering Physics and Thermophysics, 2017, 90, 586-597.	0.6	1
14	Plasma torch for supersonic plasma spray at atmospheric pressure. Journal of Materials Processing Technology, 2016, 237, 351-360.	6.3	28
15	Comparison of the Ablation Mechanism of C/C-SiC Composite under Atmospheric and Low Pressure. Advances in Science and Technology, 2014, 91, 134-139.	0.2	3
16	Influence of inlet conditions on vortex characteristics. Journal of Engineering Physics and Thermophysics, 2011, 84, 1126-1131.	0.6	4
17	COLD ELECTRODE EROSION MODEL FOR UNSTEADY ARC SPOTS. High Temperature Material Processes, 2011, 15, 329-335.	0.6	1
18	Degradation of carbon-based materials under ablative conditions produced by a high enthalpy plasma jet. Journal of Aerospace Technology and Management, 2010, 2, 33-40.	0.3	8

#	Article	lF	CITATIONS
19	Empirical Expression for Estimation of Thermal Characteristics of Materials Used for Thermal Protection. Defect and Diffusion Forum, 2010, 297-301, 15-18.	0.4	O
20	Peculiarity of current–voltage characteristics of transferred arc burning in a limited volume. Plasma Devices and Operations, 2009, 17, 23-31.	0.6	1
21	Thermal and power characteristics of plasma torch with reverse vortex. Journal Physics D: Applied Physics, 2009, 42, 175205.	2.8	18
22	The effect of surface electrode temperature on cold electrode erosion behaviour. Plasma Sources Science and Technology, 2007, 16, 1-6.	3.1	81
23	Model of workpiece erosion for electrical discharge machining process. Applied Surface Science, 2006, 253, 797-804.	6.1	26
24	Magnetic Field Effect on the Volt-Equivalent of Arc Spot Heat Flux. Contributions To Plasma Physics, 2005, 45, 522-530.	1.1	1
25	Investigation of the parameters of a nonstationary arc spot on a copper cathode by the thermospectroscopic method. I. Current density. Journal of Engineering Physics and Thermophysics, 2005, 78, 166-173.	0.6	1
26	Investigation of the parameters of a nonstationary arc spot on a copper cathode by the thermospectroscopic method. II. Dynamics of movement of the spot. Journal of Engineering Physics and Thermophysics, 2005, 78, 174-178.	0.6	0
27	The effect of arc velocity on cold electrode erosion. Physics of Plasmas, 2004, 11, 1214-1219.	1.9	17
28	Erosion of a Copper Cathode in a Nonstationary Arc Spot. I. Experimental Investigation. Journal of Engineering Physics and Thermophysics, 2004, 77, 377-383.	0.6	3
29	Erosion of a Copper Cathode in a Nonstationary Arc Spot. II. Determination of the Energy Parameters of the Arc Spot by the Thermophysical Method. Journal of Engineering Physics and Thermophysics, 2004, 77, 384-391.	0.6	1
30	Erosion of a Copper Cathode in a Nonstationary Arc Spot. III. Generalization of Experimental Results and Modeling of the Influence of Velocity on Erosion. Journal of Engineering Physics and Thermophysics, 2004, 77, 392-398.	0.6	0
31	Title is missing!. Journal of Engineering Physics and Thermophysics, 2003, 76, 378-382.	0.6	0
32	Title is missing!. Journal of Engineering Physics and Thermophysics, 2003, 76, 370-377.	0.6	3
33	Title is missing!. Journal of Engineering Physics and Thermophysics, 2003, 76, 383-391.	0.6	0
34	Working conditions of a copper cathode with minimum erosion. Plasma Sources Science and Technology, 2003, 12, 501-507.	3.1	14
35	The influence of the arc current on the cold electrode erosion. Physics of Plasmas, 2003, 10, 3770-3773.	1.9	6
36	A Simple Cold-Electrode Erosion Model for Non-stationary Arc Spots: I. Application to Electric Arc Heaters. Japanese Journal of Applied Physics, 2003, 42, 5290-5294.	1.5	3

#	Article	IF	CITATIONS
37	ON THE EFFECT OF ARC CURRENT, ARC VELOCITY AND ELECTRODE TEMPERATURE ON COLD ELECTRODE EROSION. High Temperature Material Processes, 2003, 7, 29-36.	0.6	1
38	COLD ELECTRODE EROSION MODEL FOR PULSED ARCS APPLIED TO THE ELECTRICAL DISCHARGE MACHINING PROCESS. High Temperature Material Processes, 2003, 7, 407-413.	0.6	0
39	Title is missing!. Journal of Engineering Physics and Thermophysics, 2001, 74, 813-824.	0.6	5
40	Magneticâ€Field Effect on Heat Transfer within a Cathode Arc Spot. Journal of Engineering Physics and Thermophysics, 2000, 73, 1205-1213.	0.6	4
41	Velocity of Electricâ€Arc Motion between Coaxial Electrodes in a Magnetic Field. Journal of Engineering Physics and Thermophysics, 2000, 73, 1214-1219.	0.6	2
42	A new formula for the rotational velocity of magnetically driven arcs. Journal Physics D: Applied Physics, 2000, 33, 2591-2597.	2.8	29
43	Erosion of the Cold Electrode as an Ablation Process in Unsteady Arc Spotsa. Annals of the New York Academy of Sciences, 1999, 891, 36-42.	3.8	2
44	Volt-ampere characteristics of a longitudinally blown self-adjusting ARC in plasma generators with a rod cathode. Journal of Engineering Physics and Thermophysics, 1999, 72, 129-134.	0.6	0
45	Influence of interelectrode gap and magnetic induction on the voltage of an electric arc moving in air under the action of a magnetic field. Journal of Engineering Physics and Thermophysics, 1997, 70, 461-467.	0.6	0
46	Statistical analysis of energy-transfer processes in magnetomovable arc. Journal of Engineering Physics and Thermophysics, 1997, 70, 544-549.	0.6	0
47	Gasdynamic control of arc motion. Journal of Engineering Physics and Thermophysics, 1994, 66, 628-631.	0.6	1
48	Plasma Chemical Reactor for Hydrogen Production. Advances in Science and Technology, 0, , .	0.2	1