
Michael J LathuilliÃ"re

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/629509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). International Journal of Life Cycle Assessment, 2018, 23, 368-378.	2.2	471
2	Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environmental Research Letters, 2020, 15, 035003.	2.2	77
3	The origin, supply chain, and deforestation risk of Brazil's beef exports. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31770-31779.	3.3	73
4	Water use by terrestrial ecosystems: temporal variability in rainforest and agricultural contributions to evapotranspiration in Mato Grosso, Brazil. Environmental Research Letters, 2012, 7, 024024.	2.2	59
5	Radiative forcing of methane fluxes offsets net carbon dioxide uptake for a tropical flooded forest. Global Change Biology, 2019, 25, 1967-1981.	4.2	50
6	A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia?. Hydrology and Earth System Sciences, 2016, 20, 2179-2194.	1.9	44
7	Electrochemical and spectroelectrochemical characterization of lipid organization in an electric field. Journal of Electroanalytical Chemistry, 2004, 574, 167-184.	1.9	42
8	Environmental footprints show China and Europe's evolving resource appropriation for soybean production in Mato Grosso, Brazil. Environmental Research Letters, 2014, 9, 074001.	2.2	42
9	Land occupation and transformation impacts of soybean production in Southern Amazonia, Brazil. Journal of Cleaner Production, 2017, 149, 680-689.	4.6	38
10	Spatial patterns of DOC concentration and DOM optical properties in a Brazilian tropical riverâ€wetland system. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1883-1902.	1.3	33
11	Defining freshwater as a natural resource: a framework linking water use to the area of protection natural resources. International Journal of Life Cycle Assessment, 2019, 24, 960-974.	2.2	33
12	Physiological responses to extreme hydrological events in the Pantanal wetland: heterogeneity of a plant community containing superâ€dominant species. Journal of Vegetation Science, 2016, 27, 568-577.	1.1	30
13	Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment. Water (Switzerland), 2018, 10, 349.	1.2	27
14	Land Use in LCA: Including Regionally Altered Precipitation to Quantify Ecosystem Damage. Environmental Science & Technology, 2016, 50, 11769-11778.	4.6	22
15	Rain-fed and irrigated cropland-atmosphere water fluxes and their implications for agricultural production in Southern Amazonia. Agricultural and Forest Meteorology, 2018, 256-257, 407-419.	1.9	22
16	Understanding the Stickiness of Commodity Supply Chains Is Key to Improving Their Sustainability. One Earth, 2020, 3, 100-115.	3.6	22
17	Building consensus on water use assessment of livestock production systems and supply chains: Outcome and recommendations from the FAO LEAP Partnership. Ecological Indicators, 2021, 124, 107391.	2.6	22
18	Attenuation of urban agricultural production potential and crop water footprint due to shading from buildings and trees. Environmental Research Letters, 2015, 10, 064007.	2.2	21

Michael J LathuilliÃ^{..}re

#	Article	IF	CITATIONS
19	Carbon biogeochemistry of a flooded Pantanal forest over three annual flood cycles. Biogeochemistry, 2018, 139, 1-18.	1.7	19
20	A Multimedia Hydrological Fate Modeling Framework To Assess Water Consumption Impacts in Life Cycle Assessment. Environmental Science & Technology, 2018, 52, 4658-4667.	4.6	17
21	Soil CO ₂ concentrations and efflux dynamics of a tree island in the Pantanal wetland. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2154-2169.	1.3	14
22	A contribution to harmonize water footprint assessments. Global Environmental Change, 2018, 53, 252-264.	3.6	12
23	Streams with Riparian Forest Buffers versus Impoundments Differ in Discharge and DOM Characteristics for Pasture Catchments in Southern Amazonia. Water (Switzerland), 2019, 11, 390.	1.2	11
24	Cattle production in Southern Amazonia: implications for land and water management. Environmental Research Letters, 2019, 14, 114025.	2.2	9
25	Complementarity in mid-point impacts for water use in life cycle assessment applied to cropland and cattle production in Southern Amazonia. Journal of Cleaner Production, 2019, 219, 497-507.	4.6	6
26	A Commodity Supply Mix for More Regionalized Life Cycle Assessments. Environmental Science & Technology, 2021, 55, 12054-12065.	4.6	4
27	Carbon exchange in rainfed and irrigated cropland in the Brazilian Cerrado. Agricultural and Forest Meteorology, 2022, 316, 108881.	1.9	2
28	Water use LCA—Methodology. , 2017, , 293-301.		0
29	To Irrigate Or Not To Irrigate? Implications For Agricultural Intensification In Southern Amazonia. , 2018, , .		0