M Ãngeles SanromÃ;n Braga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6294651/publications.pdf

Version: 2024-02-01

298 papers 11,898 citations

28274 55 h-index 51608 86 g-index

304 all docs

304 docs citations

times ranked

304

10496 citing authors

#	Article	IF	CITATIONS
1	Exploring the pressurized heterogeneous electro-Fenton process and modelling the system. Chemical Engineering Journal, 2022, 431, 133280.	12.7	8
2	Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation. Catalysts, 2022, 12, 64.	3.5	17
3	Heterogeneous Advanced Oxidation Processes: Current Approaches for Wastewater Treatment. Catalysts, 2022, 12, 344.	3.5	35
4	Sustainable regeneration of a honeycomb carbon aerogel used as a high-capacity adsorbent for Fluoxetine removal. Journal of Molecular Liquids, 2022, 357, 119079.	4.9	5
5	Preparation and characterization of high performance hydrochar for efficient adsorption of drugs mixture. Journal of Molecular Liquids, 2022, 353, 118797.	4.9	12
6	Exploring the use of carbon materials as cathodes in electrochemical advanced oxidation processes for the degradation of antibiotics. Journal of Environmental Chemical Engineering, 2022, 10, 107506.	6.7	11
7	Peroxymonosulphate Activation by Basolite \hat{A}^{\otimes} F-300 for Escherichia coli Disinfection and Antipyrine Degradation. International Journal of Environmental Research and Public Health, 2022, 19, 6852.	2.6	5
8	Bridging the gap to hydrochar production and its application into frameworks of bioenergy, environmental and biocatalysis areas. Bioresource Technology, 2021, 320, 124399.	9.6	33
9	Fenton Processes for Remediation of Polluted Soils. Environmental Pollution, 2021, , 167-197.	0.4	O
10	Life Cycle and Economic Analyses of the Removal of Pesticides and Pharmaceuticals from Municipal Wastewater by Anodic Oxidation. Sustainability, 2021, 13, 3669.	3.2	7
11	Prospects on integrated electrokinetic systems for decontamination of soil polluted with organic contaminants. Current Opinion in Electrochemistry, 2021, 27, 100692.	4.8	10
12	Towards a more realistic heterogeneous electro-Fenton. Journal of Electroanalytical Chemistry, 2021, 895, 115475.	3.8	14
13	Eco-approach for pharmaceutical removal: Thermochemical waste valorisation, biochar adsorption and electro-assisted regeneration. Electrochimica Acta, 2021, 389, 138694.	5.2	12
14	Kinetic and thermodynamic study of laccase cross-linked onto glyoxyl Immobead 150P carrier: Characterization and application for beechwood biografting. Enzyme and Microbial Technology, 2021, 150, 109865.	3.2	10
15	Designing novel biocompatible oligopeptide-based ionic liquids for greener downstream processes. Journal of Cleaner Production, 2021, 279, 123356.	9.3	10
16	Heterogeneous Electro-Fenton as "Green―Technology for Pharmaceutical Removal: A Review. Catalysts, 2021, 11, 85.	3.5	40
17	Heterogeneous Electro-Fenton-like Designs for the Disposal of 2-Phenylphenol from Water. Applied Sciences (Switzerland), 2021, 11, 12103.	2.5	7
18	Coupling electro-Fenton process to a biological treatment, a new methodology for the removal of ionic liquids?. Separation and Purification Technology, 2020, 233, 115990.	7.9	31

#	Article	IF	CITATIONS
19	Bifunctional floating catalyst for enhancing the synergistic effect of LED-photolysis and electro-Fenton process. Separation and Purification Technology, 2020, 230, 115880.	7.9	6
20	Prompt removal of antibiotic by adsorption/electro-Fenton degradation using an iron-doped perlite as heterogeneous catalyst. Chemical Engineering Research and Design, 2020, 144, 100-110.	5.6	29
21	Iron-Loaded Catalytic Silicate Adsorbents: Synthesis, Characterization, Electroregeneration and Application for Continuous Removal of 1-Butylpyridinium Chloride. Catalysts, 2020, 10, 950.	3.5	2
22	Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review. Applied Sciences (Switzerland), 2020, 10, 7810.	2.5	44
23	Equilibrium Study, Modeling and Optimization of Model Drug Adsorption Process by Sunflower Seed Shells. Applied Sciences (Switzerland), 2020, 10, 3271.	2.5	4
24	Ultrasonic processes for the advanced remediation of contaminated sediments. Ultrasonics Sonochemistry, 2020, 67, 105171.	8.2	7
25	Potential of cholinium glycinate for the extraction of extremophilic lipolytic biocatalysts. Separation and Purification Technology, 2020, 248, 117008.	7.9	7
26	Removal of sulfamethoxazole and methylparaben using hydrocolloid and fiber industry wastes: Comparison with biochar and laccase-biocomposite. Journal of Cleaner Production, 2020, 271, 122436.	9.3	26
27	Cholinium dipeptide as the cornerstone to build promising separation processes: A simultaneous recovery strategy for microalgae biorefineries. Separation and Purification Technology, 2020, 250, 117288.	7.9	7
28	Differential pulse voltammetry as a powerful tool to monitor the electro-Fenton process. Electrochimica Acta, 2020, 354, 136740.	5.2	8
29	Pre-concentration by natural adsorbent as plausible tool for effective electro-Fenton removal of micropollutants. Separation and Purification Technology, 2020, 241, 116676.	7.9	4
30	Environmental application of monolithic carbonaceous aerogels for the removal of emerging pollutants. Chemosphere, 2020, 248, 125995.	8.2	14
31	Iron-doped cathodes for electro-Fenton implementation: Application for pymetrozine degradation. Electrochimica Acta, 2020, 338, 135768.	5.2	34
32	Synthesis and use of efficient adsorbents under the principles of circular economy: Waste valorisation and electroadvanced oxidation process regeneration. Separation and Purification Technology, 2020, 242, 116796.	7.9	38
33	Electro-assisted activation of peroxymonosulfate by iron-based minerals for the degradation of 1-butyl-1-methylpyrrolidinium chloride. Separation and Purification Technology, 2019, 208, 34-41.	7.9	29
34	Double benefit of electrochemical techniques: Treatment and electroanalysis for remediation of water polluted with organic compounds. Electrochimica Acta, 2019, 320, 134628.	5.2	20
35	Setting the Foundations of Aqueous Threeâ€Phase Systems (A3PS) in the Quest for a Rational Design. ChemPhysChem, 2019, 20, 3311-3321.	2.1	3
36	Sulfate Radicals-Based Technology as a Promising Strategy for Wastewater. Water (Switzerland), 2019, 11, 1695.	2.7	8

#	Article	IF	Citations
37	Sketching a Suitable Immobilization Strategy for Ionic Liquid Removal in a Fixed-Bed Bioreactor. ACS Sustainable Chemistry and Engineering, 2019, 7, 4307-4314.	6.7	3
38	Sustainable Removal of Cr(VI) by Lime Peel and Pineapple Core Wastes. Applied Sciences (Switzerland), 2019, 9, 1967.	2.5	15
39	Surfactant-assisted disruption and extraction for carotenoid production from a novel Dunaliella strain. Separation and Purification Technology, 2019, 223, 243-249.	7.9	12
40	Homogeneous and heterogeneous peroxymonosulfate activation by transition metals for the degradation of industrial leather dye. Journal of Cleaner Production, 2019, 228, 222-230.	9.3	82
41	Selecting the best piping arrangement for scaling-up an annular channel reactor: An experimental and computational fluid dynamics study. Science of the Total Environment, 2019, 667, 821-832.	8.0	25
42	Design of eco-friendly aqueous two-phase systems for the efficient extraction of industrial finishing dyes. Journal of Molecular Liquids, 2019, 284, 625-632.	4.9	28
43	Suitability of dihydrogen phosphate anion to salt out cholinium-based ionic liquids. Journal of Chemical Thermodynamics, 2019, 133, 143-150.	2.0	5
44	Synthesis of magnetic-photo-Fenton catalyst for degradation of emerging pollutant. Catalysis Today, 2019, 328, 267-273.	4.4	12
45	New approaches on the agrochemicals degradation by UV oxidation processes. Chemical Engineering Journal, 2019, 376, 120026.	12.7	15
46	Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation. Environmental Science and Pollution Research, 2019, 26, 3145-3156.	5.3	26
47	Comprehensive strategy for the degradation of anti-inflammatory drug diclofenac by different advanced oxidation processes. Separation and Purification Technology, 2019, 208, 130-141.	7.9	40
48	A step forward in heterogeneous photocatalysis: Process intensification by using a static mixer as catalyst support. Chemical Engineering Journal, 2018, 343, 597-606.	12.7	57
49	Current advances and trends in electro-Fenton process using heterogeneous catalysts – A review. Chemosphere, 2018, 201, 399-416.	8.2	270
50	Electro-Fenton process for implementation of acid black liquor waste treatment. Science of the Total Environment, 2018, 635, 397-404.	8.0	23
51	Optimization of photo-Fenton process for the treatment of prednisolone. Environmental Science and Pollution Research, 2018, 25, 27768-27782.	5.3	20
52	Heterogeneous electro-Fenton as plausible technology for the degradation of imidazolinium-based ionic liquids. Chemosphere, 2018, 199, 68-75.	8.2	23
53	Kaolinite adsorption-regeneration system for dyestuff treatment by Fenton based processes. Science of the Total Environment, 2018, 622-623, 556-562.	8.0	46
54	Solid-State Fermentation for Food Applications. , 2018, , 319-355.		10

#	Article	IF	CITATIONS
55	Evaluation of different cathodes and reaction parameters on the enhancement of the electro-Fenton process. Journal of Electroanalytical Chemistry, 2018, 808, 455-463.	3.8	29
56	Comprehensive solution for acetamiprid degradation: Combined electro-Fenton and adsorption process. Journal of Electroanalytical Chemistry, 2018, 808, 446-454.	3.8	33
57	An effective electroanalytical approach for the monitoring of electroactive dyes and intermediate products formed in electro-Fenton treatment. Journal of Electroanalytical Chemistry, 2018, 808, 403-411.	3.8	22
58	Fenton-based processes for the regeneration of catalytic adsorbents. Catalysis Today, 2018, 313, 122-127.	4.4	21
59	Salting out potential of cholinium dihydrogen citrate in aqueous solution of Triton surfactants. Journal of Chemical Thermodynamics, 2018, 118, 235-243.	2.0	17
60	Highly active based iron-carbonaceous cathodes for heterogeneous electro-Fenton process: Application to degradation of parabens. Chemical Engineering Research and Design, 2018, 117, 363-371.	5.6	21
61	Demonstrating the viability of halolipase production at a mechanically stirred tank biological reactor. Bioresource Technology, 2018, 263, 334-339.	9.6	3
62	Green Binder Based on Enzymatically Polymerized Eucalypt Kraft Lignin for Fiberboard Manufacturing: A Preliminary Study. Polymers, 2018, 10, 642.	4.5	24
63	Towards sustainable removal of methylthioninium chloride by using adsorption-electroradical regeneration. Chemosphere, 2018, 210, 476-485.	8.2	5
64	Liquid-liquid demixing of Tergitol solutions by sodium salts. Journal of Chemical Thermodynamics, 2018, 126, 111-118.	2.0	3
65	Electroanalytical techniques applied to monitoring the electro-Fenton degradation of aromatic imidazolium-based ionic liquids. Journal of Applied Electrochemistry, 2018, 48, 1331-1341.	2.9	12
66	Soil flushing and simultaneous degradation of organic pollutants in soils by electrokinetic-Fenton treatment. Chemical Engineering Research and Design, 2017, 108, 99-107.	5.6	28
67	Application of electro-Fenton treatment for the elimination of 1-Butyl-3-methylimidazolium triflate from polluted water. Chemical Engineering Journal, 2017, 318, 19-28.	12.7	34
68	Increasing the Greenness of Lignocellulosic Biomass Biorefining Processes by Means of Biocompatible Separation Strategies. ACS Sustainable Chemistry and Engineering, 2017, 5, 3339-3345.	6.7	11
69	Enzymatic grafting of kraft lignin as a wood bio-protection strategy. Part 1: factors affecting the process. Holzforschung, 2017, 71, 681-687.	1.9	10
70	Enzymatic grafting of kraft lignin as a wood bio-protection strategy. Part 2: effectiveness against wood destroying basidiomycetes. Effect of copper entrapment. Holzforschung, 2017, 71, 689-695.	1.9	11
71	Heterogeneous electro-Fenton using natural pyrite as solid catalyst for oxidative degradation of vanillic acid. Journal of Electroanalytical Chemistry, 2017, 797, 69-77.	3.8	62
72	Degradation of Adsorbed Azo Dye by Solid-State Fermentation: Improvement of Culture Conditions, a Kinetic Study, and Rotating Drum Bioreactor Performance. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	17

#	Article	IF	CITATIONS
73	Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresource Technology, 2017, 246, 176-192.	9.6	192
74	Unravelling the suitability of biological induction for halophilic lipase production by Halomonas sp. LM1C cultures. Bioresource Technology, 2017, 239, 368-377.	9.6	23
75	Electrokinetic oxidant soil flushing: A solution for in situ remediation of hydrocarbons polluted soils. Journal of Electroanalytical Chemistry, 2017, 799, 1-8.	3.8	39
76	Immobilization of laccase of Pycnoporus sanguineus CS43. New Biotechnology, 2017, 39, 141-149.	4.4	38
77	Synthesis of copper coordinated dithiooxamide metal organic framework and its performance assessment in the adsorptive removal of tartrazine from water. Journal of Environmental Chemical Engineering, 2017, 5, 328-340.	6.7	33
78	Removal of polyvinylamine sulfonate anthrapyridone dye by application of heterogeneous electro-Fenton process. Environmental Science and Pollution Research, 2017, 24, 18309-18319.	5.3	17
79	Testing True Choline Ionic Liquid Biocompatibility from a Biotechnological Standpoint. ACS Sustainable Chemistry and Engineering, 2017, 5, 8302-8309.	6.7	34
80	p-Nitrophenol degradation by electro-Fenton process: Pathway, kinetic model and optimization using central composite design. Chemosphere, 2017, 185, 726-736.	8.2	65
81	A Sustainable Treatment for Wood Preservation: Enzymatic Grafting of Wood Extractives. ACS Sustainable Chemistry and Engineering, 2017, 5, 7557-7567.	6.7	29
82	Special Issue on Biochar: Production, Characterization and Applications – Beyond Soil Applications. Bioresource Technology, 2017, 246, 1.	9.6	11
83	Sequential two-column electro-Fenton-photolytic reactor for the treatment of winery wastewater. Environmental Science and Pollution Research, 2017, 24, 1137-1151.	5.3	8
84	Scaling-up and ionic liquid-based extraction of pectinases from Aspergillus flavipes cultures. Bioresource Technology, 2017, 225, 326-335.	9.6	32
85	Aqueous two-phase systems containing imidazolium ionic liquids and a Tween surfactant. Journal of Chemical Thermodynamics, 2017, 105, 209-216.	2.0	13
86	Assessment of LED-assisted electro-Fenton reactor for the treatment of winery wastewater. Chemical Engineering Journal, 2017, 310, 399-406.	12.7	30
87	Contriving to selectively separate drugs with a hydrophilic ionic liquid. Separation and Purification Technology, 2017, 174, 29-38.	7.9	17
88	Immobilization of laccase on functionalized multiwalled carbon nanotube membranes and application for dye decolorization. RSC Advances, 2016, 6, 114690-114697.	3.6	54
89	Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites. Chemosphere, 2016, 156, 347-356.	8.2	33
90	New horizons in the enzymatic production of biodiesel using neoteric solvents. Renewable Energy, 2016, 98, 92-100.	8.9	30

#	Article	IF	CITATIONS
91	Antibiotics in swine husbandry effluents: Laying the foundations for their efficient removal with a biocompatible ionic liquid. Chemical Engineering Journal, 2016, 298, 10-16.	12.7	40
92	Elimination of radiocontrast agent diatrizoic acid by photo-Fenton process and enhanced treatment by coupling with electro-Fenton process. Environmental Science and Pollution Research, 2016, 23, 19134-19144.	5.3	17
93	Elimination of radiocontrast agent Diatrizoic acid from water by electrochemical advanced oxidation: Kinetics study, mechanism and mineralization pathway. Journal of Electroanalytical Chemistry, 2016, 772, 1-8.	3.8	26
94	Electrocoagulation: Simply a Phase Separation Technology? The Case of Bronopol Compared to Its Treatment by EAOPs. Environmental Science & Environment	10.0	53
95	Coated nickel foam electrode for the implementation of continuous electroâ€Fenton treatment. Journal of Chemical Technology and Biotechnology, 2016, 91, 685-692.	3.2	15
96	Bacillus thuringiensis a promising bacterium for degrading emerging pollutants. Chemical Engineering Research and Design, 2016, 101, 19-26.	5.6	51
97	Electro-Fenton treatment of imidazolium-based ionic liquids: kinetics and degradation pathways. RSC Advances, 2016, 6, 1958-1965.	3.6	40
98	New sources of halophilic lipases: Isolation of bacteria from Spanish and Turkish saltworks. Biochemical Engineering Journal, 2016, 109, 170-177.	3.6	30
99	Grapefruit peelings as a promising biosorbent for the removal of leather dyes and hexavalent chromium. Chemical Engineering Research and Design, 2016, 101, 61-71.	5.6	71
100	Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions. Journal of Hazardous Materials, 2016, 319, 43-50.	12.4	64
101	Chestnut shells to mitigate pesticide contamination. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 166-173.	5.3	29
102	Removal of metal and organic pollutants from wastewater by a sequential selective technique. Bioresource Technology, 2016, 213, 2-10.	9.6	10
103	Microbial Adaptation to Ionic Liquids Increases the "Talent―to Treat Contaminants. ACS Sustainable Chemistry and Engineering, 2016, 4, 1637-1642.	6.7	7
104	Nickel foam a suitable alternative to increase the generation of Fenton's reagents. Chemical Engineering Research and Design, 2016, 101, 34-44.	5.6	45
105	Optimization of two-chamber photo electro Fenton reactor for the treatment of winery wastewater. Chemical Engineering Research and Design, 2016, 101, 72-79.	5.6	18
106	A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells. Bioresource Technology, 2016, 200, 396-404.	9.6	30
107	Effective monitoring of the electro-Fenton degradation of phenolic derivatives by differential pulse voltammetry on multi-walled-carbon nanotubes modified screen-printed carbon electrodes. Applied Catalysis B: Environmental, 2016, 180, 544-550.	20.2	35
108	An Inert Ionic Liquid-Based System for Ascertaining Electrolyte Diffusivity in Protective Coatings. Corrosion, 2015, 71, 259-266.	1.1	3

#	Article	IF	Citations
109	Preliminary testing and design of permeable bioreactive barrier for phenanthrene degradation by <i>Pseudomonas stutzeri</i> <scp>CECT</scp> 930 immobilized in hydrogel matrices. Journal of Chemical Technology and Biotechnology, 2015, 90, 500-506.	3.2	23
110	Enhanced selective metal adsorption on optimised agroforestry waste mixtures. Bioresource Technology, 2015, 182, 41-49.	9.6	49
111	Environmental application of an industrial waste as catalyst for the electro-Fenton-like treatment of organic pollutants. RSC Advances, 2015, 5, 14416-14424.	3.6	43
112	Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment. Chemosphere, 2015, 125, 168-174.	8.2	70
113	Heterogeneous electro-Fenton treatment: preparation, characterization and performance in groundwater pesticide removal. Journal of Industrial and Engineering Chemistry, 2015, 27, 276-282.	5.8	62
114	Aqueous immiscibility of cholinium chloride ionic liquid and Triton surfactants. Journal of Chemical Thermodynamics, 2015, 91, 86-93.	2.0	27
115	Application of a new sandwich of granular activated and fiber carbon as cathode in the electrochemical advanced oxidation treatment of pharmaceutical effluents. Separation and Purification Technology, 2015, 151, 243-250.	7.9	32
116	Triggering phase disengagement of 1-alkyl-3-methylimidazolium chloride ionic liquids by using inorganic and organic salts. Journal of Chemical Thermodynamics, 2015, 88, 1-7.	2.0	7
117	Scale-up of removal process using a remediating-bacterium isolated from marine coastal sediment. RSC Advances, 2015, 5, 36665-36672.	3.6	5
118	New approaches on heterogeneous electro-Fenton treatment of winery wastewater. Electrochimica Acta, 2015, 169, 134-141.	5.2	60
119	Effective heterogeneous electro-Fenton process of m-cresol with iron loaded actived carbon. RSC Advances, 2015, 5, 31049-31056.	3.6	56
120	lonic liquids for the concomitant use in extremophiles lysis and extremozymes extraction. Bioresource Technology, 2015, 186, 303-308.	9.6	10
121	Microbial adaptation to ionic liquids. RSC Advances, 2015, 5, 17379-17382.	3.6	20
122	Simultaneous biotreatment of Polycyclic Aromatic Hydrocarbons and dyes in a one-step bioreaction by an acclimated Pseudomonas strain. Bioresource Technology, 2015, 198, 181-188.	9.6	13
123	Synthesis of bimetallic Fe–Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water. Journal of Molecular Liquids, 2015, 212, 227-236.	4.9	135
124	A biocompatible stepping stone for the removal of emerging contaminants. Separation and Purification Technology, 2015, 153, 91-98.	7.9	38
125	Preparation of activated carbon from Alligator weed (Alternenthera philoxeroids) and its application for tartrazine removal: Isotherm, kinetics and spectroscopic analysis. Journal of Environmental Chemical Engineering, 2015, 3, 2560-2568.	6.7	46
126	Wood Hydrophobization by Laccase-Assisted Grafting ofÂLaurylÂGallate. Journal of Wood Chemistry and Technology, 2015, 35, 156-165.	1.7	11

#	Article	IF	CITATIONS
127	On the hunt for truly biocompatible ionic liquids for lipase-catalyzed reactions. RSC Advances, 2015, 5, 3386-3389.	3.6	54
128	Insights into polyaromatic hydrocarbon biodegradation by Pseudomonas stutzeri CECT 930: operation at bioreactor scale and metabolic pathways. International Journal of Environmental Science and Technology, 2015, 12, 1243-1252.	3.5	23
129	Degradation of organic pollutants by heterogeneous electro-Fenton process using Mn-alginate composite. Journal of Chemical Technology and Biotechnology, 2015, 90, 1439-1447.	3.2	30
130	Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	11
131	lonic liquids improve the anticorrosion performance of Zn-rich coatings. RSC Advances, 2014, 4, 59587-59593.	3.6	12
132	Electroâ€Fenton decolourization of dyes in batch mode by the use of catalytic activity of iron loaded hydrogels. Journal of Chemical Technology and Biotechnology, 2014, 89, 1235-1242.	3.2	32
133	Structural characterization of Kraft lignins from different spent cooking liquors by 1D and 2D Nuclear Magnetic Resonance spectroscopy. Biomass and Bioenergy, 2014, 63, 156-166.	5.7	87
134	Phase segregation in aqueous solutions of non-ionic surfactants using ammonium, magnesium and iron salts. Journal of Chemical Thermodynamics, 2014, 70, 147-153.	2.0	14
135	Potential of laccase for modification of Eucalyptus globulus wood: a XPS study. Wood Science and Technology, 2014, 48, 151-160.	3.2	11
136	Stability and kinetic behavior of immobilized laccase from <i>Myceliophthora thermophila</i> in the presence of the ionic liquid 1â€ethylâ€3â€methylimidazolium ethylsulfate. Biotechnology Progress, 2014, 30, 790-796.	2.6	19
137	Surfactant-Enhanced Solubilization and Simultaneous Degradation of Phenanthrene in Marine Sediment by Electro-Fenton Treatment. Industrial & Engineering Chemistry Research, 2014, 53, 2917-2923.	3.7	42
138	Hybrid sequential treatment of aromatic hydrocarbon-polluted effluents using non-ionic surfactants as solubilizers and extractants. Bioresource Technology, 2014, 162, 259-265.	9.6	12
139	Technosols as a novel valorization strategy for an ecological management of dredged marine sediments. Ecological Engineering, 2014, 67, 182-189.	3.6	46
140	Box–Behnken methodology for Cr (VI) and leather dyes removal by an eco-friendly biosorbent: F. vesiculosus. Bioresource Technology, 2014, 160, 166-174.	9.6	55
141	Application of benthonic microbial fuel cells and electro-Fenton process to dye decolourisation. Journal of Industrial and Engineering Chemistry, 2014, 20, 3754-3760.	5.8	52
142	Influence of the addition of Tween 20 on the phase behaviour of ionic liquids-based aqueous systems. Journal of Chemical Thermodynamics, 2014, 79, 178-183.	2.0	4
143	Environmentally Benign Sequential Extraction of Heavy Metals from Marine Sediments. Industrial & Lamp; Engineering Chemistry Research, 2014, 53, 8615-8620.	3.7	27
144	Assessment of sepiolite as a low-cost adsorbent for phenanthrene and pyrene removal: Kinetic and equilibrium studies. Ecological Engineering, 2014, 70, 287-294.	3.6	37

#	Article	IF	CITATIONS
145	lonic liquids and non-ionic surfactants: a new marriage for aqueous segregation. RSC Advances, 2014, 4, 32698.	3.6	37
146	Electro-Fenton oxidation of imidacloprid by Fe alginate gel beads. Applied Catalysis B: Environmental, 2014, 144, 416-424.	20.2	99
147	Efficient biosynthesis of a chitinase from <i>Halobacterium salinarum</i> expressed in <i>Escherichia coli</i> . Journal of Chemical Technology and Biotechnology, 2014, 89, 1653-1659.	3.2	3
148	Comparison of two conditioning schemes for detoxifying SO2- ethanol-water hydrolysate from lignocellulosics for ABE fermentation. Nordic Pulp and Paper Research Journal, 2014, 29, 370-382.	0.7	2
149	Recent developments and applications of immobilized laccase. Biotechnology Advances, 2013, 31, 1808-1825.	11.7	513
150	Approaching chlorpyrifos bioelimination at bench scale bioreactor. Bioprocess and Biosystems Engineering, 2013, 36, 1303-1309.	3.4	10
151	Assessment of Arthrobacter viscosus as reactive medium for forming permeable reactive biobarrier applied to PAHs remediation. Environmental Science and Pollution Research, 2013, 20, 7348-7354.	5. 3	13
152	Using iron-loaded sepiolite obtained by adsorption as a catalyst in the electro-Fenton oxidation of Reactive Black 5. Environmental Science and Pollution Research, 2013, 20, 5983-5993.	5.3	47
153	Optimisation of decolourisation and degradation of Reactive Black 5 dye under electro-Fenton process using Fe alginate gel beads. Environmental Science and Pollution Research, 2013, 20, 2172-2183.	5. 3	41
154	Electro-Fenton decolourisation of dyes in an airlift continuous reactor using iron alginate beads. Environmental Science and Pollution Research, 2013, 20, 2252-2261.	5.3	28
155	Immobilization of laccase on modified silica: Stabilization, thermal inactivation and kinetic behaviour in 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid. Bioresource Technology, 2013, 131, 405-412.	9.6	69
156	Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents. Bioresource Technology, 2013, 146, 689-695.	9.6	52
157	Remediation of contaminated marine sediment using electrokinetic–Fenton technology. Journal of Industrial and Engineering Chemistry, 2013, 19, 932-937.	5.8	66
158	Feasibility of Solidâ€State Fermentation Using Spent Fungiâ€Substrate in the Biodegradation of PAHs. Clean - Soil, Air, Water, 2013, 41, 610-615.	1.1	29
159	Viability of phenanthrene biodegradation by an isolated bacterial consortium: optimization and scale-up. Bioprocess and Biosystems Engineering, 2013, 36, 133-141.	3.4	13
160	North Western Spain hot springs are a source of lipolytic enzyme-producing thermophilic microorganisms. Bioprocess and Biosystems Engineering, 2013, 36, 239-250.	3.4	14
161	Probing the self-aggregation of ionic liquids in aqueous solutions using density and speed of sound data. Journal of Chemical Thermodynamics, 2013, 59, 43-48.	2.0	16
162	Polymerisation of Kraft lignin from black liquors by laccase from Myceliophthora thermophila: Effect of operational conditions and black liquor origin. Bioresource Technology, 2013, 131, 288-294.	9.6	50

#	Article	IF	CITATIONS
163	Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere, 2013, 91, 711-716.	8.2	50
164	Bacterial–fungal interactions enhance power generation in microbial fuel cells and drive dye decolourisation by an ex situ and in situ electro-Fenton process. Bioresource Technology, 2013, 148, 39-46.	9.6	81
165	Development of an Industrial Microbial System for Chitinolytic Enzymes Production. Industrial & Engineering Chemistry Research, 2013, 52, 10046-10051.	3.7	1
166	On the Suitability of a Bacterial Consortium To Implement a Continuous PAHs Biodegradation Process in a Stirred Tank Bioreactor. Industrial & Engineering Chemistry Research, 2012, 51, 15895-15900.	3.7	13
167	Triton X surfactants to form aqueous biphasic systems: Experiment and correlation. Journal of Chemical Thermodynamics, 2012, 54, 385-392.	2.0	37
168	On the phase behaviour of polyethoxylated sorbitan (Tween) surfactants in the presence of potassium inorganic salts. Journal of Chemical Thermodynamics, 2012, 55, 151-158.	2.0	32
169	Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresource Technology, 2012, 119, 270-276.	9.6	118
170	Electrokinetic remediation of lead and phenanthrene polluted soils. Geoderma, 2012, 173-174, 128-133.	5.1	108
171	Targeting the Production of Biomolecules by Extremophiles at Bioreactor Scale. Chemical Engineering and Technology, 2012, 35, 1565-1575.	1.5	23
172	Enzymatic polymerisation and effect of fractionation of dissolved lignin from Eucalyptus globulus Kraft liquor. Bioresource Technology, 2012, 121, 131-138.	9.6	57
173	Role of Laccase and Low Molecular Weight Metabolites from <i>Trametes versicolor</i> in Dye Decolorization. Scientific World Journal, The, 2012, 2012, 1-9.	2.1	14
174	Advances in the Electroâ€Fenton Process for Remediation of Recalcitrant Organic Compounds. Chemical Engineering and Technology, 2012, 35, 609-617.	1.5	100
175	Application of central composite face-centered design and response surface methodology for the optimization of electro-Fenton decolorization of Azure B dye. Environmental Science and Pollution Research, 2012, 19, 1738-1746.	5.3	68
176	Removal of hexavalent chromium of contaminated soil by coupling electrokinetic remediation and permeable reactive biobarriers. Environmental Science and Pollution Research, 2012, 19, 1800-1808.	5.3	37
177	Isolation of novel benzo[a]anthracene-degrading microorganisms and continuous bioremediation in an expanded-bed bioreactor. Bioprocess and Biosystems Engineering, 2012, 35, 851-855.	3.4	21
178	A process for extracellular thermostable lipase production by a novel Bacillus thermoamylovorans strain. Bioprocess and Biosystems Engineering, 2012, 35, 931-941.	3.4	26
179	Scaling-up the production of thermostable lipolytic enzymes from Thermus aquaticus YT1. Bioprocess and Biosystems Engineering, 2012, 35, 1011-1022.	3.4	4
180	Assessment of a process to degrade metal working fluids using Pseudomonas stutzeri CECT 930 and indigenous microbial consortia. Chemosphere, 2012, 86, 420-426.	8.2	25

#	Article	IF	Citations
181	Application of zeolite-Arthrobacter viscosus system for the removal of heavy metal and dye: Chromium and Azure B. Desalination, 2012, 284, 150-156.	8.2	69
182	Technoeconomic assessment of phenanthrene degradation by Pseudomonas stutzeri CECT 930 in a batch bioreactor. Bioresource Technology, 2012, 104, 81-89.	9.6	58
183	Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads. Journal of Hazardous Materials, 2012, 213-214, 369-377.	12.4	122
184	Impact of ionic liquids on extreme microbial biotypes from soil. Green Chemistry, 2011, 13, 687.	9.0	54
185	Desorption kinetics of phenanthrene and lead from historically contaminated soil. Chemical Engineering Journal, 2011, 167, 84-90.	12.7	36
186	An esterase from Thermus thermophilus HB27 with hyper-thermoalkalophilic properties: Purification, characterisation and structural modelling. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 127-137.	1.8	21
187	Comparative efficiencies of the decolourisation of leather dyes by enzymatic and electrochemical treatments. Desalination, 2011, 278, 312-317.	8.2	27
188	On the hyperthermostability of lipolytic enzymes from <i>Thermus aquaticus</i> YTâ€1: exploring their application to polymer degradation. Journal of Chemical Technology and Biotechnology, 2011, 86, 838-844.	3.2	3
189	Hybrid Technologies for the Remediation of Diesel Fuel Polluted Soil. Chemical Engineering and Technology, 2011, 34, 2077-2082.	1.5	27
190	Studies of laccase from Trametes versicolor in aqueous solutions of several methylimidazolium ionic liquids. Bioresource Technology, 2011, 102, 7494-7499.	9.6	39
191	Development of an electrochemical cell for the removal of Reactive Black 5. Desalination, 2011, 274, 39-43.	8.2	58
192	Electrokinetic remediation of PAH mixtures from kaolin. Journal of Hazardous Materials, 2010, 179, 1156-1160.	12.4	63
193	Thermostable lipolytic enzymes production in batch and continuous cultures of Thermus thermophilus HB27. Bioprocess and Biosystems Engineering, 2010, 33, 347-354.	3.4	15
194	Strategies for utilisation of food-processing wastes to produce lipases in solid-state cultures of Rhizopus oryzae. Bioprocess and Biosystems Engineering, 2010, 33, 929-935.	3.4	20
195	Biodegradation and utilization of waste cooking oil by <i>Yarrowia lipolytica</i> CECT 1240. European Journal of Lipid Science and Technology, 2010, 112, 1200-1208.	1.5	47
196	Removal of Cr(VI) from Aqueous Solutions by a Bacterial Biofilm Supported on Zeolite: Optimisation of the Operational Conditions and Scaleâ€Up of the Bioreactor. Chemical Engineering and Technology, 2010, 33, 2008-2014.	1.5	25
197	A comprehensive study of lipase production by <i>Yarrowia lipolytica</i> CECT 1240 (ATCC 18942): from shake flask to continuous bioreactor. Journal of Chemical Technology and Biotechnology, 2010, 85, 258-266.	3.2	25
198	A copper(II) thiosemicarbazone complex built on gold for the immobilization of lipase and laccase. Journal of Colloid and Interface Science, 2010, 348, 96-100.	9.4	11

#	Article	IF	Citations
199	Remediation of polluted soil by a two-stage treatment system: Desorption of phenanthrene in soil and electrochemical treatment to recover the extraction agent. Journal of Hazardous Materials, 2010, 173, 794-798.	12.4	63
200	Decontamination of soils containing PAHs by electroremediation: A review. Journal of Hazardous Materials, 2010, 177, 1-11.	12.4	184
201	Decolorization of dye Reactive Black 5 by newly isolated thermophilic microorganisms from geothermal sites in Galicia (Spain). Journal of Hazardous Materials, 2010, 182, 735-742.	12.4	88
202	Soil washing using cyclodextrins and their recovery by application of electrochemical technology. Chemical Engineering Journal, 2010, 159, 53-57.	12.7	49
203	Influence of operational parameters on electro-Fenton degradation of organic pollutants from soil. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 1104-1110.	1.7	21
204	Assessment of Relevant Factors Influencing Lipolytic Enzyme Production by <i>Thermus thermophilus </i> HB27 in Laboratoryâ€Scale Bioreactors. Chemical Engineering and Technology, 2009, 32, 606-612.	1.5	21
205	Improvement of dye electrochemical treatment by combination with ultrasound technique. Journal of Chemical Technology and Biotechnology, 2009, 84, 1118-1124.	3.2	36
206	Evaluation of a novel <i>Bacillus</i> strain from a northâ€western Spain hot spring as a source of extracellular thermostable lipase. Journal of Chemical Technology and Biotechnology, 2009, 84, 1509-1515.	3.2	12
207	Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresource Technology, 2009, 100, 3630-3637.	9.6	57
208	Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction. Journal of Electroanalytical Chemistry, 2009, 629, 126-132.	3.8	30
209	PAHs soil decontamination in two steps: Desorption and electrochemical treatment. Journal of Hazardous Materials, 2009, 166, 462-468.	12.4	86
210	Electro-Fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment. Chemical Engineering Journal, 2009, 155, 62-67.	12.7	147
211	A two-stage process using electrokinetic remediation and electrochemical degradation for treating benzo[a]pyrene spiked kaolin. Chemosphere, 2009, 74, 1516-1521.	8.2	45
212	Evaluation of Electrokinetic Technique for Industrial Waste Decontamination. Separation Science and Technology, 2009, 44, 2304-2321.	2.5	29
213	Electrochemical remediation of phenanthrene from contaminated kaolinite. Environmental Geochemistry and Health, 2008, 30, 89-94.	3.4	29
214	Lipolytic Enzyme Production by Immobilized <i>Rhizopus oryzae</i> . Chemical Engineering and Technology, 2008, 31, 1555-1560.	1.5	10
215	Thermal spring water enhances lipolytic activity in Thermus thermophilus HB27. Process Biochemistry, 2008, 43, 1383-1390.	3.7	18
216	Production of Thermostable Lipolytic Activity by Thermus Species. Biotechnology Progress, 2008, 21, 1198-1205.	2.6	35

#	Article	IF	CITATIONS
217	Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant–electrochemical degradation. Chemosphere, 2008, 70, 1438-1444.	8.2	93
218	Removal of organic pollutants and heavy metals in soils by electrokinetic remediation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 871-875.	1.7	23
219	Electromigration of Mn, Fe, Cu and Zn with citric acid in contaminated clay. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 823-831.	1.7	21
220	Hydrogen Peroxide Biosensor with a Supramolecular Layer-by-Layer Design. Langmuir, 2008, 24, 7654-7657.	3.5	39
221	Remediation of phenanthrene from contaminated kaolinite by electroremediation-Fenton technology. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 901-906.	1.7	28
222	Remediation of Dye-Polluted Kaolinite by Combination of Electrokinetic Remediation and Electrochemical Treatment. Environmental Engineering Science, 2008, 25, 419-428.	1.6	20
223	The effect of violuric acid on the decolourization of recalcitrant dyes by laccase from Trametes hirsuta. Dyes and Pigments, 2007, 74, 123-126.	3.7	20
224	Stimulation of novel thermostable extracellular lipolytic enzyme in cultures of Thermus sp Enzyme and Microbial Technology, 2007, 40, 187-194.	3.2	19
225	Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzyme and Microbial Technology, 2007, 40, 1286-1290.	3.2	87
226	Improving on electrokinetic remediation in spiked Mn kaolinite by addition of complexing agents. Electrochimica Acta, 2007, 52, 3349-3354.	5.2	52
227	Enhanced electrokinetic remediation of polluted kaolinite with an azo dye. Electrochimica Acta, 2007, 52, 3393-3398.	5.2	30
228	Enhanced production of laccase activity by Trametes versicolor immobilized into alginate beads by the addition of different inducers. World Journal of Microbiology and Biotechnology, 2007, 23, 367-373.	3.6	34
229	Enhanced production of laccase in Coriolopsis rigida grown on barley bran in flask or expanded-bed bioreactor. World Journal of Microbiology and Biotechnology, 2007, 23, 1189-1194.	3.6	10
230	Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere, 2006, 62, 817-822.	8.2	79
231	Decolourization of synthetic dyes by Trametes hirsuta in expanded-bed reactors. Chemosphere, 2006, 62, 1558-1563.	8.2	40
232	Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemosphere, 2006, 63, 912-917.	8.2	78
233	Effect of two wastes from groundnut processing on laccase production and dye decolourisation ability. Journal of Food Engineering, 2006, 73, 388-393.	5.2	24
234	Utilisation of grape seeds for laccase production in solid-state fermentors. Journal of Food Engineering, 2006, 74, 263-267.	5.2	66

#	Article	IF	CITATIONS
235	Application of solid-state fermentation to food industryâ€"A review. Journal of Food Engineering, 2006, 76, 291-302.	5.2	535
236	Optimum stability conditions of pH and temperature for ligninase and manganese-dependent peroxidase from Phanerochaete chrysosporium. Application to in vitro decolorization of Poly R-478 by MnP. World Journal of Microbiology and Biotechnology, 2006, 22, 607-612.	3.6	31
237	Amelioration of the ability to decolorize dyes by laccase: relationship between redox mediators and laccase isoenzymes in Trametes versicolor. World Journal of Microbiology and Biotechnology, 2006, 22, 1197-1204.	3.6	44
238	Applicability of Coriolopsis rigida for Biodegradation of Polycyclic Aromatic Hydrocarbons. Biotechnology Letters, 2006, 28, 1013-1017.	2.2	14
239	Application of solid-state fermentation to ligninolytic enzyme production. Biochemical Engineering Journal, 2005, 22, 211-219.	3.6	196
240	Lipolytic enzyme production by Thermus thermophilus HB27 in a stirred tank bioreactor. Biochemical Engineering Journal, 2005, 26, 95-99.	3.6	44
241	Reutilisation of food processing wastes for production of relevant metabolites: application to laccase production by Trametes hirsuta. Journal of Food Engineering, 2005, 66, 419-423.	5.2	48
242	Chestnut shell and barley bran as potential substrates for laccase production by Coriolopsis rigida under solid-state conditions. Journal of Food Engineering, 2005, 68, 315-319.	5.2	63
243	Coconut flesh: a novel raw material for laccase production by Trametes hirsuta under solid-state conditions Journal of Food Engineering, 2005, 71, 208-213.	5.2	35
244	Decolourisation of textile indigo dye by DC electric current. Engineering Geology, 2005, 77, 253-261.	6.3	34
245	Dye decolorization by Trametes hirsuta immobilized into alginate beads. World Journal of Microbiology and Biotechnology, 2005, 21, 405-409.	3.6	64
246	Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: Partial purification and preliminary biochemical characterisation. Journal of Biotechnology, 2005, 117, 233-241.	3.8	63
247	Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsuta. Chemosphere, 2005, 58, 417-422.	8.2	152
248	Inhibition of laccase activity from Trametes versicolor by heavy metals and organic compounds. Chemosphere, 2005, 60, 1124-1128.	8.2	98
249	Selection of an electrolyte to enhance the electrochemical decolourisation of indigo. Optimisation and scale-up. Chemosphere, 2005, 60, 1080-1086.	8.2	59
250	Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic wastes. Biotechnology Letters, 2004, 26, 327-330.	2.2	78
251	Quantification of intra- and extra-cellular thermophilic lipase/esterase production by Thermus sp Biotechnology Letters, 2004, 26, 705-708.	2.2	34
252	Production of Laccase by Trametes hirsuta Grown in an Immersion Bioreactor and its Application in the Docolorization of Dyes from a Leather Factory. Engineering in Life Sciences, 2004, 4, 233-238.	3.6	46

#	Article	IF	Citations
253	Optimisation of electrochemical decolourisation process of an azo dye, Methyl Orange. Journal of Chemical Technology and Biotechnology, 2004, 79, 1349-1353.	3.2	33
254	Exploitation of a waste from the brewing industry for laccase production by two Trametes species. Journal of Food Engineering, 2004, 64, 423-428.	5.2	52
255	Degradation or polymerisation of Phenol Red dye depending to the catalyst system used. Process Biochemistry, 2004, 39, 1811-1815.	3.7	19
256	Stainless steel sponge: a novel carrier for the immobilisation of the white-rot fungus Trametes hirsuta for decolourization of textile dyes. Bioresource Technology, 2004, 95, 67-72.	9.6	141
257	Electrochemical decolourisation of structurally different dyes. Chemosphere, 2004, 57, 233-239.	8.2	135
258	Enhanced decolourisation ability of laccase towards various synthetic dyes by an electrocatalysis technology. Biotechnology Letters, 2003, 25, 603-606.	2.2	8
259	A novel application of solid state culture: production of lipases by Yarrowia lipolytica. Biotechnology Letters, 2003, 25, 1225-1229.	2.2	62
260	Title is missing!. World Journal of Microbiology and Biotechnology, 2003, 19, 665-669.	3.6	64
261	Grape seeds: the best lignocellulosic waste to produce laccase by solid state cultures of Trametes hirsuta. Biotechnology Letters, 2003, 25, 491-495.	2.2	74
262	Effect of lipids and surfactants on extracellular lipase production by Yarrowia lipolytica. Journal of Chemical Technology and Biotechnology, 2003, 78, 1166-1170.	3.2	38
263	Biodegradation of Grape Cluster Stems and Ligninolytic Enzyme Production by Phanerochaete chrysosporium during Semi-Solid-State Cultivation. Acta Biotechnologica, 2003, 23, 65-74.	0.9	12
264	Production of laccase by Trametes versicolor in an airlift fermentor. Process Biochemistry, 2003, 39, 467-473.	3.7	55
265	Extracellular polysaccharides production by Arthrobacter viscosus. Journal of Food Engineering, 2003, 60, 463-467.	5.2	24
266	Investigation of several bioreactor configurations for laccase production by Trametes versicolor operating in solid-state conditions. Biochemical Engineering Journal, 2003, 15, 21-26.	3.6	71
267	Study of the degradation of dyes by MnP of Phanerochaete chrysosporium produced in a fixed-bed bioreactor. Chemosphere, 2003, 51, 295-303.	8.2	59
268	Photocatalytic degradation of dyes in aqueous solution operating in a fluidised bed reactor. Chemosphere, 2002, 46, 83-86.	8.2	53
269	Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor. Bioresource Technology, 2002, 82, 109-113.	9.6	129
270	Comparison between the protease production ability of ligninolytic fungi cultivated in solid state media. Process Biochemistry, 2002, 37, 1017-1023.	3.7	38

#	Article	IF	CITATIONS
271	Performance of a solid-state immersion bioreactor for ligninolytic enzyme production: evaluation of different operational variables. Process Biochemistry, 2002, 38, 219-227.	3.7	20
272	Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions. Process Biochemistry, 2002, 38, 249-255.	3.7	86
273	New uses of food waste: application to laccase production by Trametes hirsuta. Biotechnology Letters, 2002, 24, 701-704.	2.2	68
274	Strategies for improving ligninolytic enzyme activities in semi-solid-state bioreactors. Process Biochemistry, 2001, 36, 995-999.	3.7	13
275	Design of a new rotating drum bioreactor for ligninolytic enzyme production by Phanerochaete chrysosporium grown on an inert support. Process Biochemistry, 2001, 37, 549-554.	3.7	54
276	Characterisation of deactivating agents and their influence on the stability of manganese-dependent peroxidase fromPhanerochaete chrysosporium. Journal of Chemical Technology and Biotechnology, 2001, 76, 867-872.	3.2	14
277	Design of different bioreactor configurations: application to ligninolytic enzyme production in semi-solid-state cultivation. Journal of Chemical Technology and Biotechnology, 2001, 76, 78-82.	3.2	18
278	Utilisation of lignocellulosic wastes for lignin peroxidase production by semi-solid-state cultures of Phanerochaete chrysosporium. Biodegradation, 2001, 12, 283-289.	3.0	29
279	Title is missing!. Biotechnology Letters, 2001, 23, 451-455.	2.2	6
280	Stimulation of ligninolytic enzyme production and the ability to decolourise Poly R-478 in semi-solid-state cultures of Phanerochaete chrysosporium. Bioresource Technology, 2000, 74, 159-164.	9.6	23
281	Title is missing!. Biotechnology Letters, 2000, 22, 1443-1447.	2.2	42
282	Production of manganese peroxidase and laccase in laboratory-scale bioreactors by. Bioprocess and Biosystems Engineering, 1999, 20, 531.	0.5	8
283	Influence of milk whey, nitrogen and phosphorus concentration on oxalic acid production by. Bioprocess and Biosystems Engineering, 1999, 20, 1.	0.5	1
284	Influence of some inducers on activity of ligninolytic enzymes from corncob cultures of Phanerochaete chrysosporium in semi-solid-state conditions. Progress in Biotechnology, 1998, , 703-708.	0.2	3
285	Laccase production in semi-solid cultures of Phanerochaete chrysosporium. Biotechnology Letters, 1997, 19, 995-998.	2.2	27
286	Effect of pulsation on morphology of Aspergillus niger and Phanerochaete chrysosporium in a fluidized-bed reactor. Progress in Biotechnology, 1996, , 518-523.	0.2	2
287	The influence of substrate structure on the kinetics of the hydrolysis of starch by glucoamylase. Applied Biochemistry and Biotechnology, 1996, 59, 329-336.	2.9	28
288	Control of pellet morphology of filamentous fungi in fluidized bed bioreactors by means of a pulsing flow. Application to Aspergillus niger and Phanerochaete chrysosporium. Enzyme and Microbial Technology, 1996, 19, 261-266.	3.2	49

#	Article	IF	CITATIONS
289	Citric acid production in submerged and solid state culture of Aspergillus niger. Bioprocess and Biosystems Engineering, 1996, 15, 31.	0.5	1
290	A comparison of two techniques (adsorption and entrapment) for the immobilization of Aspergillus niger in polyurethane foam. Biotechnology Letters, 1994, 8, 389-394.	0.5	28
291	A pulsing device for packed-bed bioreactors: I. Hydrodynamic behaviour. Bioprocess and Biosystems Engineering, 1994, 10, 61-73.	0.5	19
292	A pulsing device for packed-bed bioreactors: II. Application to alcoholic fermentation. Bioprocess and Biosystems Engineering, 1994, 10, 75-81.	0.5	18
293	Alcoholic fermentation of xylose by immobilized Pichia stipitis in a fixed-bed pulsed bioreactor. Enzyme and Microbial Technology, 1994, 16, 72-78.	3.2	23
294	Mass transfer control of enzymatic hydrolysis of polysaccharides by glucoamylase. Enzyme and Microbial Technology, 1991, 13, 142-147.	3.2	24
295	Enzymatic hydrolysis of starch in a fixed-bed pulsed-flow reactor. Applied Biochemistry and Biotechnology, 1991, 28-29, 527-538.	2.9	15
296	Continuous fermentation of d-xylose by immobilizedpichia stipitis comparison between cstr and cpfr. Applied Biochemistry and Biotechnology, 1991, 28-29, 731-739.	2.9	11
297	The D-xylose fermenting capacities of immobilizedPichia stipitis andPachysolen tannophilus. Biotechnology Letters, 1989, 11, 353-358.	2.2	3
298	Green zero-valent iron nanoparticles synthesized using herbal extracts for degradation of dyes from wastewater., 0, 92, 159-167.		7