
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6294433/publications.pdf Version: 2024-02-01

Wen Hill Dilan

#	Article	IF	CITATIONS
1	Limestone calcined clay cement: mechanical properties, crystallography, and microstructure development. Journal of Sustainable Cement-Based Materials, 2023, 12, 427-440.	1.7	5
2	Theoretical modelling of soft robotic gripper with bioinspired fibrillar adhesives. Mechanics of Advanced Materials and Structures, 2022, 29, 2250-2266.	1.5	9
3	A new empirical diffusion model for solvents in sprayed seals based on evaporation measurements. International Journal of Pavement Engineering, 2022, 23, 3592-3602.	2.2	1
4	Determining the disordered nanostructure of calcium silicate hydrate (Câ€5â€H) from broad Xâ€ray diffractograms. Journal of the American Ceramic Society, 2022, 105, 1491-1502.	1.9	6
5	Crystallization of tricalcium silicate blended with different silica powder dosages at high temperature. Construction and Building Materials, 2022, 316, 125884.	3.2	9
6	Graphene Oxide-Based Mesoporous Calcium Silicate Hydrate Sandwich-like Structure: Synthesis and Application for Thermal Energy Storage. ACS Applied Energy Materials, 2022, 5, 958-969.	2.5	10
7	The interaction of graphene oxide with cement mortar: implications on reinforcing mechanisms. Journal of Materials Science, 2022, 57, 3405-3415.	1.7	7
8	A century of research on calcium silicate hydrate (C–S–H): Leaping from structural characterization to nanoengineering. Journal of the American Ceramic Society, 2022, 105, 3081-3099.	1.9	15
9	ZIF-8 derived ZnO–calcium silicate mesoporous structures: Synthesis and photocatalytic activity. Microporous and Mesoporous Materials, 2022, 332, 111702.	2.2	4
10	Role of nanofillers for high mechanical performance cementitious composites. Construction and Building Materials, 2022, 322, 126489.	3.2	9
11	Microstructure of graphene oxide–silica-reinforced OPC composites: Image-based characterization and nano-identification through deep learning. Cement and Concrete Research, 2022, 154, 106737.	4.6	20
12	Effective strategies to realize high-performance graphene-reinforced cement composites. Construction and Building Materials, 2022, 324, 126636.	3.2	19
13	Capillary bridges between unsaturated nano-mineral particles: a molecular dynamics study. Physical Chemistry Chemical Physics, 2022, 24, 8398-8407.	1.3	0
14	Damage-tolerant material design motif derived from asymmetrical rotation. Nature Communications, 2022, 13, 1289.	5.8	3
15	Graphene oxide-reinforced thin shells for high-performance, lightweight cement composites. Composites Part B: Engineering, 2022, 235, 109796.	5.9	12
16	Large set microstructure reconstruction mimicking quantum computing approach via deep learning. Acta Materialia, 2022, 230, 117860.	3.8	1
17	Revealing Microstructural Modifications of Graphene Oxide-Modified Cement via Deep Learning and Nanoporosity Mapping: Implications for Structural Materials' Performance. ACS Applied Nano Materials, 2022, 5, 7092-7102.	2.4	3
18	Loading-rate-dependent effects of colloidal nanosilica on the mechanical properties of cement composites. Cement and Concrete Composites, 2022, 131, 104583.	4.6	8

#	Article	IF	CITATIONS
19	Intelligent robotic systems for structural health monitoring: Applications and future trends. Automation in Construction, 2022, 139, 104273.	4.8	40
20	Proposed mechanism for the enhanced microstructure of graphene oxide–Portland cement composites. Journal of Building Engineering, 2022, 54, 104604.	1.6	5
21	Antifoaming effect of graphene oxide nanosheets in polymer-modified cement composites for enhanced microstructure and mechanical performance. Cement and Concrete Research, 2022, 158, 106843.	4.6	22
22	Direct 2D cement-nanoadditive deposition enabling carbon-neutral hydrogen from natural gas. Nano Energy, 2022, 99, 107415.	8.2	8
23	Noncontact cable force estimation with unmanned aerial vehicle and computer vision. Computer-Aided Civil and Infrastructure Engineering, 2021, 36, 73-88.	6.3	81
24	The effects of graphene oxide-silica nanohybrids on the workability, hydration, and mechanical properties of Portland cement paste. Construction and Building Materials, 2021, 266, 121016.	3.2	52
25	Early age properties of alkali-activated cement and class G cement under different saturation conditions in oil well applications. Construction and Building Materials, 2021, 271, 121543.	3.2	8
26	Advanced Applications of Emerging 2D Nanomaterials in Construction Materials. Lecture Notes in Civil Engineering, 2021, , 247-256.	0.3	0
27	Zeolitic imidazolate framework nanoleaves (ZIF-L) enhancement of strength and durability of portland cement composites. Construction and Building Materials, 2021, 272, 122015.	3.2	16
28	Effects of carbon nanotubes on the early-age hydration kinetics of Portland cement using isothermal calorimetry. Cement and Concrete Composites, 2021, 119, 103994.	4.6	44
29	Controlling the rheological properties of cement for a submillimetre-thin shell structure. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	3
30	Descriptor-based method combined with partition to reconstruct three-dimensional complex microstructures. Physical Review E, 2021, 104, 015316.	0.8	1
31	Extensive use of waste glass in one-part alkali-activated materials: Towards sustainable construction practices. Waste Management, 2021, 130, 1-11.	3.7	34
32	Graphene kirigami membrane with superior theoretical permeability and adjustable selection capability. Carbon, 2021, 181, 398-407.	5.4	8
33	Controlled growth and ordering of poorly-crystalline calcium-silicate-hydrate nanosheets. Communications Materials, 2021, 2, .	2.9	19
34	Transregional spatial correlation revealed by deep learning and implications for material characterisation and reconstruction. Materials Characterization, 2021, 178, 111268.	1.9	3
35	Wave propagation in elliptic graphene sheet for energy harvesting. Nano Energy, 2021, 86, 106089.	8.2	2
36	Near-field infrared microscopy: A novel analytic mapping technique to nanocharacterize calcium silicate-based cement materials. Cement and Concrete Research, 2021, 147, 106525.	4.6	6

#	Article	IF	CITATIONS
37	Graphene oxide-coated sand for improving performance of cement composites. Cement and Concrete Composites, 2021, 124, 104279.	4.6	28
38	Digital concrete modelling: An alternative approach to microstructural pore analysis of cement hydrates. Construction and Building Materials, 2021, 303, 124558.	3.2	9
39	Mechanisms of dispersion of nanoparticle-decorated graphene oxide nanosheets in aqueous media: Experimental and molecular dynamics simulation study. Carbon, 2021, 184, 689-697.	5.4	9
40	Evolution of tricalcium silicate (C3S) hydration based on image analysis of microstructural observations obtained via Field's metal intrusion. Materials Characterization, 2021, 181, 111457.	1.9	9
41	Using graphene oxide to improve physical property and control ASR expansion of cement mortar. Construction and Building Materials, 2021, 307, 125006.	3.2	13
42	Dispersion of silane-functionalized GO and its reinforcing effects in cement composites. Journal of Building Engineering, 2021, 43, 103228.	1.6	5
43	Predicting the permeability of consolidated silty clay via digital soil reconstruction. Computers and Geotechnics, 2021, 140, 104468.	2.3	8
44	Effect of Graphene Oxide on the Pore Structure of Cement Paste: Implications for Performance Enhancement. ACS Applied Nano Materials, 2021, 4, 10623-10633.	2.4	15
45	Floating forest: A novel breakwater-windbreak structure against wind and wave hazards. Frontiers of Structural and Civil Engineering, 2021, 15, 1111-1127.	1.2	5
46	Evolution of silicate structure during corrosion of tricalcium silicate (C3S) and dicalcium silicate (C2S) with hydrogen sulphide (H2S). Corrosion Science, 2020, 163, 108301.	3.0	9
47	Integrally hydrophobic cementitious composites made with waste amorphous carbon powder. Construction and Building Materials, 2020, 233, 117238.	3.2	17
48	Dispersion of graphene oxide–silica nanohybrids in alkaline environment for improving ordinary Portland cement composites. Cement and Concrete Composites, 2020, 106, 103488.	4.6	71
49	Analysis of interfacial nanostructure and interaction mechanisms between cellulose fibres and calcium silicate hydrates using experimental and molecular dynamics simulation data. Applied Surface Science, 2020, 506, 144914.	3.1	33
50	Graphene-based modification on the interface in fibre reinforced cementitious composites for improving both strength and toughness. Carbon, 2020, 170, 493-502.	5.4	35
51	Grid-based electron–solid interaction simulation for characterizing high-dimensional microstructures. Ultramicroscopy, 2020, 217, 113070.	0.8	1
52	Toward the Understanding of Stress-Induced Mineral Dissolution via Molecular Scale Simulations. Journal of Physical Chemistry C, 2020, 124, 19166-19173.	1.5	5
53	Highly tunable anisotropic co-deformation of black phosphorene superlattices. Nanoscale, 2020, 12, 19787-19796.	2.8	1
54	Properties of one-part fly ash/slag-based binders activated by thermally-treated waste glass/NaOH blends: A comparative study. Cement and Concrete Composites, 2020, 112, 103679.	4.6	56

#	Article	IF	CITATIONS
55	Damage evolution of cement mortar with high volume slag exposed to sulfate attack. Construction and Building Materials, 2020, 247, 118626.	3.2	22
56	An improved deflection model for FRP RC beams using an artificial intelligence-based approach. Engineering Structures, 2020, 219, 110793.	2.6	8
57	Self-healing mechanism of Zn-enhanced cement stone: An application for sour natural gas field. Construction and Building Materials, 2019, 227, 116651.	3.2	12
58	Towards microstructure-based analysis and design for seepage water in underground engineering: Effect of image characteristics. Tunnelling and Underground Space Technology, 2019, 93, 103086.	3.0	8
59	Wrinkling process in a single silicene sheet caused by in-plane shear. Engineering Structures, 2019, 198, 109446.	2.6	2
60	Effects of microstructure and pore water on electrical conductivity of cement slurry during early hydration. Composites Part B: Engineering, 2019, 177, 107435.	5.9	40
61	Graphene oxide-coated Poly(vinyl alcohol) fibers for enhanced fiber-reinforced cementitious composites. Composites Part B: Engineering, 2019, 174, 107010.	5.9	45
62	Quantitative microstructural characterisation of Portland cement‑carbon nanotube composites using electron and x-ray microscopy. Cement and Concrete Research, 2019, 123, 105767.	4.6	47
63	Experimental study on dynamic compressive behavior of steel fiber reinforced concrete at elevated temperatures. Construction and Building Materials, 2019, 210, 673-684.	3.2	42
64	Dynamic increased reinforcing effect of graphene oxide on cementitious nanocomposite. Construction and Building Materials, 2019, 206, 694-702.	3.2	23
65	Quasi-static combined compression-shear crushing of honeycombs: An experimental study. Materials and Design, 2019, 167, 107632.	3.3	28
66	Influence of ultrasonication on the dispersion and enhancing effect of graphene oxide–carbon nanotube hybrid nanoreinforcement in cementitious composite. Composites Part B: Engineering, 2019, 164, 45-53.	5.9	128
67	Degradation of high molecular weight polyacrylamide by alkali-activated persulfate: Reactivity and potential application in filter cake removal before cementing. Journal of Petroleum Science and Engineering, 2019, 174, 70-79.	2.1	38
68	Wave Response of a Novel Breakwater Concept With Oscillating Water Columns. , 2019, , .		0
69	Reinforcement effects of polyvinyl alcohol and polypropylene fibers on flexural behaviors of sulfoaluminate cement matrices. Cement and Concrete Composites, 2018, 88, 139-149.	4.6	57
70	Role of Multiwalled Carbon Nanotubes as Shear Reinforcing Nanopins in Quasi-Brittle Matrices. ACS Applied Nano Materials, 2018, 1, 1731-1740.	2.4	27
71	Reliable Synthesis of Largeâ€Area Monolayer WS ₂ Single Crystals, Films, and Heterostructures with Extraordinary Photoluminescence Induced by Water Intercalation. Advanced Optical Materials, 2018, 6, 1701347.	3.6	28
72	Review of recent research and developments on floating breakwaters. Ocean Engineering, 2018, 158, 132-151.	1.9	137

#	Article	IF	CITATIONS
73	Improvement of mechanical properties by incorporating graphene oxide into cement mortar. Mechanics of Advanced Materials and Structures, 2018, 25, 1313-1322.	1.5	64
74	Numerical modelling of plastic–damage response and crack propagation in RAC under uniaxial loading. Magazine of Concrete Research, 2018, 70, 459-472.	0.9	31
75	Deflection distribution estimation of tied-arch bridges using long-gauge strain measurements. Structural Control and Health Monitoring, 2018, 25, e2119.	1.9	22
76	Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments. Construction and Building Materials, 2018, 161, 519-527.	3.2	167
77	Exfoliation and dispersion of boron nitride nanosheets to enhance ordinary Portland cement paste. Nanoscale, 2018, 10, 1004-1014.	2.8	55
78	Impact performances of steel tube-confined recycled aggregate concrete (STCRAC) after exposure to elevated temperatures. Cement and Concrete Composites, 2018, 86, 87-97.	4.6	42
79	Influence of potassium titanate whisker on the mechanical properties and microstructure of calcium aluminate cement for <i>in situ</i> combustion. Journal of Adhesion Science and Technology, 2018, 32, 343-358.	1.4	10
80	Snubbing effect in atomic scale friction of graphene. Composites Part B: Engineering, 2018, 136, 119-125.	5.9	3
81	Synthesis of microcrystalline brownmillerite Ca2(Al,Fe)2O5and its influence of mechanical properties to the class G oil-well cement. Journal of Adhesion Science and Technology, 2018, 32, 125-138.	1.4	7
82	Dynamic responses of bridge–embankment transitions in high speed railway: Field tests and data analyses. Engineering Structures, 2018, 175, 565-576.	2.6	28
83	Dispersion of graphene oxide agglomerates in cement paste and its effects on electrical resistivity and flexural strength. Cement and Concrete Composites, 2018, 92, 145-154.	4.6	106
84	Transformation of pore structure in consolidated silty clay: New insights from quantitative pore profile analysis. Construction and Building Materials, 2018, 186, 615-625.	3.2	21
85	Graphene-based nanosheets for stronger and more durable concrete: A review. Construction and Building Materials, 2018, 183, 642-660.	3.2	252
86	Design of low-density cement optimized by cellulose-based fibre for oil and natural gas wells. Powder Technology, 2018, 338, 506-518.	2.1	30
87	Molecular simulation of water and chloride ion diffusion in nanopores of alkali-activated aluminosilicate structures. Ceramics International, 2018, 44, 20723-20731.	2.3	20
88	The coupled reaction and crystal growth mechanism of tricalcium silicate (C3S): An experimental study for carbon dioxide geo-sequestration wells. Construction and Building Materials, 2018, 187, 1286-1294.	3.2	19
89	Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste. Construction and Building Materials, 2017, 136, 506-514.	3.2	230
90	Crumb waste tire rubber surface modification by plasma polymerization of ethanol and its application on oil-well cement. Applied Surface Science, 2017, 409, 325-342.	3.1	72

#	Article	IF	CITATIONS
91	Direct Observation of 2D Electrostatics and Ohmic Contacts in Template-Grown Graphene/WS ₂ Heterostructures. ACS Nano, 2017, 11, 2785-2793.	7.3	74
92	Effects of Nanoalumina and Graphene Oxide on Early-Age Hydration and Mechanical Properties of Cement Paste. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	103
93	Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste. Construction and Building Materials, 2017, 145, 402-410.	3.2	248
94	Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste. Composites Part A: Applied Science and Manufacturing, 2017, 100, 1-8.	3.8	157
95	Design of GFRP-reinforced rectangular concrete columns under eccentric axial loading. Magazine of Concrete Research, 2017, 69, 865-877.	0.9	45
96	Mechanical behavior of recycled aggregate concrete-filled steel tube stub columns after exposure to elevated temperatures. Construction and Building Materials, 2017, 146, 571-581.	3.2	75
97	Methylcellulose stabilized multi-walled carbon nanotubes dispersion for sustainable cement composites. Construction and Building Materials, 2017, 146, 76-85.	3.2	47
98	Guided waves for damage identification in pipeline structures: A review. Structural Control and Health Monitoring, 2017, 24, e2007.	1.9	72
99	Effects of nano-particles on failure process and microstructural properties of recycled aggregate concrete. Construction and Building Materials, 2017, 142, 42-50.	3.2	167
100	Fly ash-based boroaluminosilicate geopolymers: Experimental and molecular simulations. Ceramics International, 2017, 43, 4119-4126.	2.3	57
101	Coupled effect of CO2 attack and tensile stress on well cement under CO2 storage conditions. Construction and Building Materials, 2017, 130, 92-102.	3.2	31
102	Reinforcing mechanism of graphene at atomic level: Friction, crack surface adhesion and 2D geometry. Carbon, 2017, 114, 557-565.	5.4	78
103	Experimental and numerical studies on impact behaviors of recycled aggregate concrete-filled steel tube after exposure to elevated temperature. Materials and Design, 2017, 136, 103-118.	3.3	38
104	A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective. Construction and Building Materials, 2017, 153, 346-357.	3.2	133
105	Quantification of evaporation induced error in atom probe tomography using molecular dynamics simulation. Ultramicroscopy, 2017, 182, 28-35.	0.8	5
106	Effects of Ammonium Hydrolyzed Polyacrylonitrile on Oil-Well Cement Slurry. Journal of Materials in Civil Engineering, 2017, 29, 04017090.	1.3	9
107	Pore shape analysis using centrifuge driven metal intrusion: Indication on porosimetry equations, hydration and packing. Construction and Building Materials, 2017, 154, 95-104.	3.2	40
108	Early-age shrinkage development of ultra-high-performance concrete under heat curing treatment. Construction and Building Materials, 2017, 131, 767-774.	3.2	89

#	Article	IF	CITATIONS
109	On boundary conditions for buckling and vibration of nonlocal beams. European Journal of Mechanics, A/Solids, 2017, 61, 73-81.	2.1	39
110	Graphene Oxide as Additive to Replace Using Air-Entraining Agents. ACI Materials Journal, 2017, 114, .	0.3	2
111	Nano-Impact Tests with Ultra-High Strain Rate Loading Using Graphene and Ion Impact. International Journal of Applied Mechanics, 2016, 08, 1650043.	1.3	4
112	Failure of CFRP-to-steel double strap joint bonded using carbon nanotubes modified epoxy adhesive at moderately elevated temperatures. Composites Part B: Engineering, 2016, 94, 95-101.	5.9	40
113	Development of granular expanded perlite/paraffin phase change material composites and prevention of leakage. Solar Energy, 2016, 137, 179-188.	2.9	100
114	Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading. Materials and Design, 2016, 112, 58-66.	3.3	136
115	Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength. Construction and Building Materials, 2016, 123, 327-335.	3.2	235
116	Strain Relaxation of Monolayer WS ₂ on Plastic Substrate. Advanced Functional Materials, 2016, 26, 8707-8714.	7.8	97
117	A new scheme for analysis of pore characteristics using centrifuge driven non-toxic metal intrusion. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2, 173-182.	1.3	30
118	Agglomeration process of surfactant-dispersed carbon nanotubes in unstable dispersion: A two-stage agglomeration model and experimental evidence. Powder Technology, 2016, 301, 412-420.	2.1	37
119	Distribution of carbon nanotubes in fresh ordinary Portland cement pastes: understanding from a two-phase perspective. RSC Advances, 2016, 6, 5745-5753.	1.7	50
120	The properties of fly ash based geopolymer mortars made with dune sand. Materials and Design, 2016, 92, 571-578.	3.3	88
121	Graphene Oxide Impact on Hardened Cement Expressed in Enhanced Freeze–Thaw Resistance. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	113
122	Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	96
123	Improvement of mechanical properties of concrete canvas by anhydrite-modified calcium sulfoaluminate cement. Journal of Composite Materials, 2016, 50, 1937-1950.	1.2	31
124	New approach for characterisation of mechanical properties of cement paste at micrometre scale. Materials and Design, 2015, 87, 992-995.	3.3	24
125	Molecular Dynamics Simulations of Graphene Pull-Out from Calcium Silicate Hydrate. , 2015, , .		2
126	Discussion: Effect of strain rate on splitting tensile strength of geopolymer concrete. Magazine of Concrete Research, 2015, 67, 906-907.	0.9	4

#	Article	IF	CITATIONS
127	Effect of carbon nanotube modified epoxy adhesive on CFRP-to-steel interface. Composites Part B: Engineering, 2015, 79, 95-104.	5.9	70
128	Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon, 2015, 85, 212-220.	5.4	233
129	Mechanical properties and microstructure of a graphene oxide–cement composite. Cement and Concrete Composites, 2015, 58, 140-147.	4.6	623
130	Mechanical behavior of geopolymer concrete subjected to high strain rate compressive loadings. Materials and Structures/Materiaux Et Constructions, 2015, 48, 671-681.	1.3	48
131	Optimizing the degree of carbon nanotube dispersion in a solvent for producing reinforced epoxy matrices. Powder Technology, 2015, 284, 541-550.	2.1	37
132	Degradation of VIP barrier envelopes exposed to alkaline solution at different temperatures. Energy and Buildings, 2015, 93, 208-216.	3.1	11
133	Incorporating graphene oxide in cement composites: A study of transport properties. Construction and Building Materials, 2015, 84, 341-347.	3.2	298
134	Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage. Applied Energy, 2015, 159, 601-609.	5.1	43
135	Hencky Bar-Chain Model for Buckling and Vibration of Beams with Elastic End Restraints. International Journal of Structural Stability and Dynamics, 2015, 15, 1540007.	1.5	65
136	Bond Characterization of Steel-CFRP with Carbon Nanotube Modified Epoxy Adhesive via Pull-off Tests. International Journal of Structural Stability and Dynamics, 2015, 15, 1540027.	1.5	8
137	Reinforcing Effects of Graphene Oxide on Portland Cement Paste. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	323
138	Predicting the influence of ultrasonication energy on the reinforcing efficiency of carbon nanotubes. Carbon, 2014, 77, 1-10.	5.4	76
139	Transition and Stability of Copolymer Adsorption Morphologies on the Surface of Carbon Nanotubes and Implications on Their Dispersion. Langmuir, 2014, 30, 10035-10042.	1.6	14
140	Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building Materials, 2014, 73, 113-124.	3.2	548
141	Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch. Composites Part A: Applied Science and Manufacturing, 2014, 61, 126-133.	3.8	64
142	Effects of mineral admixtures and lime on disintegration of alkali-activated slag exposed to 50°C. Construction and Building Materials, 2014, 70, 254-261.	3.2	14
143	Effect of strain rate on splitting tensile strength of geopolymer concrete. Magazine of Concrete Research, 2014, 66, 825-835.	0.9	42
144	Effects of CFRP bond locations on the Mode I stress intensity factor of centreâ€cracked tensile steel plates. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 154-167.	1.7	12

#	Article	IF	CITATIONS
145	Damping and microstructure of fly ash-based geopolymers. Journal of Materials Science, 2013, 48, 3128-3137.	1.7	28
146	Effect of fatigue loading on the bond behaviour between UHM CFRP plates and steel plates. Composites Part B: Engineering, 2013, 50, 344-353.	5.9	75
147	The role of alumina on performance of alkali-activated slag paste exposed to 50°C. Cement and Concrete Research, 2013, 54, 143-150.	4.6	28
148	Water Sorption Hysteresis in Cement Nano Slits. , 2013, , .		1
149	Effect of very fine particles on workability and strength of concrete made with dune sand. Construction and Building Materials, 2013, 47, 131-137.	3.2	146
150	Fatigue tests on steel plates with longitudinal weld attachment strengthened by ultra high modulus carbon fibre reinforced polymer plate. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 1027-1038.	1.7	31
151	Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams. Journal of Applied Physics, 2013, 114, .	1.1	47
152	Calibration of Eringen's small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model. Journal Physics D: Applied Physics, 2013, 46, 345501.	1.3	67
153	A grillage model for predicting wrinkles in annular graphene under circular shearing. Journal of Applied Physics, 2013, 113, 014902.	1.1	9
154	MODE I STRESS INTENSITY FACTOR OF CENTER-CRACKED TENSILE STEEL PLATES WITH CFRP REINFORCEMENT. International Journal of Structural Stability and Dynamics, 2013, 13, 1350005.	1.5	12
155	IMPROVED END BEARING CAPACITIES OF SHARP-CORNER ALUMINUM TUBULAR SECTIONS WITH CFRP STRENGTHENING. International Journal of Structural Stability and Dynamics, 2012, 12, 109-130.	1.5	17
156	BUCKLING BEHAVIOR OF SHORT MULTI-WALLED CARBON NANOTUBES UNDER AXIAL COMPRESSION LOADS. International Journal of Structural Stability and Dynamics, 2012, 12, 1250045.	1.5	6
157	Buckling and Vibration of Carbon Nanotubes Embedded in Polyethylene Polymers. Journal of Nanotechnology in Engineering and Medicine, 2012, 3, .	0.8	1
158	Driving Forces and Transportation Efficiency in Water Transportation Through Single-Walled Carbon Nanotubes. Journal of Nanotechnology in Engineering and Medicine, 2012, 3, .	0.8	1
159	Fatigue Tests of Cracked Steel Plates Strengthened with UHM CFRP Plates. Advances in Structural Engineering, 2012, 15, 1801-1815.	1.2	68
160	Tunable wrinkling pattern in annular graphene under circular shearing at inner edge. Nanoscale, 2012, 4, 5077.	2.8	35
161	The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cement and Concrete Composites, 2012, 34, 201-207.	4.6	358
162	Bond characteristics between ultra high modulus CFRP laminates and steel. Thin-Walled Structures, 2012, 51, 147-157.	2.7	154

#	Article	IF	CITATIONS
163	Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective. Chemical Science, 2011, 2, 1407.	3.7	166
164	Investigation on Buckling Behavior of Short MWCNT. Procedia Engineering, 2011, 14, 250-255.	1.2	2
165	A Study of Cantilever Beam Vibration Wireless Transmission System. Procedia Engineering, 2011, 14, 1300-1306.	1.2	1
166	Carbon nanotube–cement composites: A retrospect. IES Journal Part A: Civil and Structural Engineering, 2011, 4, 254-265.	0.4	96
167	Design rules for web crippling of CFRP strengthened aluminium rectangular hollow sections. Thin-Walled Structures, 2011, 49, 1195-1207.	2.7	26
168	Detection of gas atoms via vibration of graphenes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2411-2415.	0.9	90
169	Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear. Carbon, 2011, 49, 3107-3112.	5.4	98
170	EXAMINATION OF CYLINDRICAL SHELL THEORIES FOR BUCKLING OF CARBON NANOTUBES. International Journal of Structural Stability and Dynamics, 2011, 11, 1035-1058.	1.5	33
171	SENSOR VALIDATION IN DAMAGE LOCATING VECTOR METHOD FOR STRUCTURAL HEALTH MONITORING. International Journal of Structural Stability and Dynamics, 2011, 11, 149-180.	1.5	5
172	Experimental Study on Bond Behaviour between UHM CFRP Laminate and Steel. , 2011, , 890-893.		4
173	Collision of a suddenly released bent carbon nanotube with a circular graphene sheet. Journal of Applied Physics, 2010, 107, 074303.	1.1	11
174	Uniformly sampled genetic algorithm with gradient search for structural identification – Part I: Global search. Computers and Structures, 2010, 88, 949-962.	2.4	17
175	Uniformly sampled genetic algorithm with gradient search for structural identification – Part II: Local search. Computers and Structures, 2010, 88, 1149-1161.	2.4	13
176	Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples. Materials, 2010, 3, 5169-5194.	1.3	113
177	Water Transport with a Carbon Nanotube Pump. ACS Nano, 2010, 4, 2338-2344.	7.3	75
178	Modeling the Instability of Carbon Nanotubes: From Continuum Mechanics to Molecular Dynamics. Journal of Nanotechnology in Engineering and Medicine, 2010, 1, .	0.8	12
179	Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology, 2009, 20, 395707.	1.3	113
180	Structural damage detection using enhanced damage locating vector method with limited wireless sensors. Journal of Sound and Vibration, 2009, 328, 411-427.	2.1	16

#	Article	IF	CITATIONS
181	Nonlinear bending and stretching of a circular graphene sheet under a central point load. Nanotechnology, 2009, 20, 075702.	1.3	86
182	A novel ring type ultrasonic motor with multiple wavenumbers: design, fabrication and characterization. Smart Materials and Structures, 2009, 18, 125025.	1.8	17
183	Structural damage detection using wireless sensors accounting for data loss. , 2009, , .		0
184	Modification of fundamental vibration modes of circular plates with free edges. Journal of Sound and Vibration, 2008, 317, 709-715.	2.1	15
185	Axisymmetric transverse vibrations of circular cylindrical shells with variable thickness. Journal of Sound and Vibration, 2008, 317, 1035-1041.	2.1	38
186	Modeling of the mechanical instability of carbon nanotubes. Carbon, 2008, 46, 285-290.	5.4	39
187	Exact Solution for Buckling of Columns Including Self-Weight. Journal of Engineering Mechanics - ASCE, 2008, 134, 116-119.	1.6	58
188	Free vibration of nanorings/arches based on nonlocal elasticity. Journal of Applied Physics, 2008, 104, 014303.	1.1	80
189	Finite element analysis of the piezoelectric-based repair of a delaminated beam. Smart Materials and Structures, 2008, 17, 015017.	1.8	22
190	Structural damage assessment using damage locating vector with limited sensors. Proceedings of SPIE, 2008, , .	0.8	2
191	Modeling of fracture of carbon nanotubes with vacancy defect. Physical Review B, 2007, 75, .	1.1	26
192	Publisher's Note: Modeling of fracture of carbon nanotubes with vacancy defect [Phys. Rev. B75, 201405 (2007)]. Physical Review B, 2007, 75, .	1.1	4
193	Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. Journal of Applied Physics, 2007, 101, 024305.	1.1	327
194	Inelastic buckling of carbon nanotubes. Applied Physics Letters, 2007, 90, 033110.	1.5	68
195	Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology, 2007, 18, 385704.	1.3	173
196	Molecular mechanics modeling of carbon nanotube fracture. Carbon, 2007, 45, 1769-1776.	5.4	96
197	Finite element solution for intermittent-contact problem with piezoelectric actuation in ring type USM. Finite Elements in Analysis and Design, 2007, 43, 193-205.	1.7	25

198 Finite element analysis of a ring type ultrasonic motor. , 2005, , .

#	Article	IF	CITATIONS
199	Free vibration analysis of piezoelectric coupled thin and thick annular plate. Journal of Sound and Vibration, 2005, 281, 119-139.	2.1	82
200	Generalized hypergeometric function solutions for transverse vibration of a class of non-uniform annular plates. Journal of Sound and Vibration, 2005, 287, 785-807.	2.1	21
201	Repair of notched beam under dynamic load using piezoelectric patch. International Journal of Mechanical Sciences, 2004, 46, 1517-1533.	3.6	37