Andrew Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6293906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Does habitat complexity and prior residency influence aggression between invasive and native freshwater crayfish?. Ethology, 2022, 128, 443-452.	1.1	3
2	Seascape connectivity of temperate fishes between estuarine nursery areas and open coastal reefs. Journal of Applied Ecology, 2022, 59, 1406-1416.	4.0	13
3	Widespread bleaching in the One Tree Island lagoon (Southern Great Barrier Reef) during record-breaking temperatures in 2020. Environmental Monitoring and Assessment, 2021, 193, 590.	2.7	7
4	Temporal stability in a protected and isolated fish community within marine parks surrounding Lord Howe Island. Regional Studies in Marine Science, 2021, 48, 102038.	0.7	1
5	Assessing trap bias in the endemic Australian genus of freshwater crayfish,. Marine and Freshwater Research, 2021, 73, 100-109.	1.3	2
6	Fish assemblages in protected seagrass habitats: Assessing fish abundance and diversity in no-take marine reserves and fished areas. Aquaculture and Fisheries, 2020, 5, 213-223.	2.2	8
7	Determining Stingray Movement Patterns in a Wave-Swept Coastal Zone Using a Blimp for Continuous Aerial Video Surveillance. Fishes, 2020, 5, 31.	1.7	7
8	Anchor and chain scour as disturbance agents in benthic environments: trends in the literature and charting a course to more sustainable boating and shipping. Marine Pollution Bulletin, 2020, 161, 111683.	5.0	21
9	Coexisting with sharks: a novel, socially acceptable and non-lethal shark mitigation approach. Scientific Reports, 2020, 10, 17497.	3.3	5
10	Are Spine-Bearing Freshwater Gastropods Better Defended?. Ecologies, 2020, 1, 3-13.	1.6	0
11	Sharkeye: Real-Time Autonomous Personal Shark Alerting via Aerial Surveillance. Drones, 2020, 4, 18.	4.9	26
12	Seagrass canopies and the performance of acoustic telemetry: implications for the interpretation of fish movements. Animal Biotelemetry, 2020, 8, .	1.9	27
13	Continuous wildlife monitoring using blimps as an aerial platform: a case study observing marine megafauna. Australian Zoologist, 2020, 40, 407-415.	1.1	15
14	Temperate zone coastal seascapes: seascape patterning and adjacent seagrass habitat shape the distribution of rocky reef fish assemblages. Landscape Ecology, 2019, 34, 2337-2352.	4.2	20
15	Differences in architecture between native and non-indigenous macroalgae influence associations with epifauna. Journal of Experimental Marine Biology and Ecology, 2019, 514-515, 76-86.	1.5	13
16	Increased sensitivity of subantarctic marine invertebrates to copper under a changing climate - Effects of salinity and temperature. Environmental Pollution, 2019, 249, 54-62.	7.5	17
17	Biogeographic conundrum: Why so few stream nerite species (Gastropoda: Neritidae) in Australia?. Freshwater Biology, 2019, 64, 2084-2088.	2.4	3
18	Comparative copper sensitivity between life stages of common subantarctic marine invertebrates. Environmental Toxicology and Chemistry, 2018, 37, 807-815.	4.3	19

#	Article	IF	CITATIONS
19	Living on the edge: Early life history phases as determinants of distribution in Pyura praeputialis (Heller, 1878), a rocky shore ecosystem engineer. Marine Environmental Research, 2018, 142, 40-47.	2.5	2
20	Miniature baited remote underwater video (mini-BRUV) reveals the response of cryptic fishes to seagrass cover. Environmental Biology of Fishes, 2018, 101, 1717-1722.	1.0	15
21	Biotic consequences of a shift in invertebrate ecosystem engineers: Invasion of New Zealand rocky shores by a zoneâ€forming ascidian. Marine Ecology, 2018, 39, e12502.	1.1	4
22	Accounting for habitat structural complexity improves the assessment of performance in no-take marine reserves. Biological Conservation, 2018, 224, 100-110.	4.1	38
23	Defence behind the ramparts: Spicule armament against specialist predators in a subtidal habitat-forming ascidian. Journal of Experimental Marine Biology and Ecology, 2018, 507, 31-38.	1.5	3
24	Habitat and seascape patterns drive spatial variability in temperate fish assemblages: implications for marine protected areas. Marine Ecology - Progress Series, 2018, 607, 171-186.	1.9	20
25	Effects of dredging on critical ecological processes for marine invertebrates, seagrasses and macroalgae, and the potential for management with environmental windows using Western Australia as a case study. Ecological Indicators, 2017, 78, 229-242.	6.3	34
26	Toxicity of copper to three common subantarctic marine gastropods. Ecotoxicology and Environmental Safety, 2017, 136, 70-77.	6.0	10
27	Sensitivity of six subantarctic marine invertebrates to common metal contaminants. Environmental Toxicology and Chemistry, 2016, 35, 2245-2251.	4.3	20
28	Under the radar: Sessile epifaunal invertebrates in the seagrassPosidonia australis. Journal of the Marine Biological Association of the United Kingdom, 2016, 96, 363-377.	0.8	8
29	Curb anchor scour for green shipping. Nature, 2016, 533, 36-36.	27.8	4
30	Anchors away? The impacts of anchor scour by ocean-going vessels and potential response options. Marine Policy, 2016, 73, 1-7.	3.2	27
31	Active acoustic tracking suggests that soft sediment fishes can show site attachment: a preliminary assessment of the movement patterns of the blue-spotted flathead (Platycephalus caeruleopunctatus). Animal Biotelemetry, 2016, 4, .	1.9	19
32	The effects of the diel cycle and the density of an invasive predator on predation risk and prey response. Animal Behaviour, 2016, 117, 87-95.	1.9	5
33	Rules of attraction: enticing pelagic fish to mid-water remote underwater video systems (RUVS). Marine Ecology - Progress Series, 2015, 529, 213-218.	1.9	11
34	Sponges as sentinels: Metal accumulation using transplanted sponges across a metal gradient. Environmental Toxicology and Chemistry, 2014, 33, 2818-2825.	4.3	9
35	Diel and tidal cycles regulate larval dynamics in salt marshes and mangrove forests. Marine Biology, 2014, 161, 769-784.	1.5	9
36	Abiotic surrogates for temperate rocky reef biodiversity: implications for marine protected areas. Diversity and Distributions, 2014, 20, 284-296.	4.1	51

#	Article	IF	CITATIONS
37	Response of the hairy mussel Trichomya hirsuta to sediment-metal contamination in the presence of a bioturbator. Marine Pollution Bulletin, 2014, 88, 180-187.	5.0	5
38	The influence of gummy sharks, Mustelus antarcticus, on observed fish assemblage structure. Environmental Biology of Fishes, 2014, 97, 215-222.	1.0	24
39	Ecological response to MPA zoning following cessation of bait harvesting in an estuarine tidal flat. Marine Ecology - Progress Series, 2014, 517, 171-180.	1.9	8
40	Changes in Fish Assemblages following the Establishment of a Network of No-Take Marine Reserves and Partially-Protected Areas. PLoS ONE, 2014, 9, e85825.	2.5	52
41	Molluscs on acid: gastropod shell repair and strength in acidifying oceans. Marine Ecology - Progress Series, 2014, 509, 203-211.	1.9	57
42	A comparison of the impact of †̃seagrass-friendly' boat mooring systems on Posidonia australis. Marine Environmental Research, 2013, 83, 54-62.	2.5	70
43	Bait type affects fish assemblages and feeding guilds observed at baited remote underwater video stations. Marine Ecology - Progress Series, 2013, 477, 189-199.	1.9	81
44	Biodiversity in saline coastal lagoons: patterns of distribution and human impacts on sponge and ascidian assemblages. Diversity and Distributions, 2013, 19, 1394-1406.	4.1	6
45	Complex Responses of Intertidal Molluscan Embryos to a Warming and Acidifying Ocean in the Presence of UV Radiation. PLoS ONE, 2013, 8, e55939.	2.5	28
46	Sponges as sentinels: Patterns of spatial and intra-individual variation in trace metal concentration. Marine Pollution Bulletin, 2012, 64, 80-89.	5.0	45
47	Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2376-2383.	2.6	144
48	Non-indigenous macroalga hosts different epiphytic assemblages to conspecific natives in southeast Australia. Marine Biology, 2010, 157, 1095-1103.	1.5	13
49	Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. Marine Biology, 2010, 157, 2061-2069.	1.5	108
50	Cellular responses of encapsulated gastropod embryos to multiple stressors associated with climate change. Journal of Experimental Marine Biology and Ecology, 2010, 383, 130-136.	1.5	25
51	Reproduction and early development inHaliotis coccoradiata(Vetigastropoda: Haliotidae). Invertebrate Reproduction and Development, 2010, 54, 77-87.	0.8	9
52	Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Marine Environmental Research, 2010, 69, 234-239.	2.5	115
53	Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla. PLoS ONE, 2010, 5, e11372.	2.5	206
54	Effects of a shark repulsion device on rocky reef fishes: no shocking outcomes. Marine Ecology - Progress Series, 2010, 408, 295-298.	1.9	10

#	Article	IF	CITATIONS
55	Structural complexity facilitates accumulation and retention of fragments of the invasive alga, Caulerpa taxifolia. Journal of Experimental Marine Biology and Ecology, 2009, 371, 163-169.	1.5	3
56	The role of recreational activities in creating fragments of invasive Caulerpa taxifolia. Journal of Experimental Marine Biology and Ecology, 2009, 376, 17-25.	1.5	10
57	Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 2009, 50, 560-570.	2.7	52
58	Examining the phylogeny of the Australasian Lymnaeidae (Heterobranchia: Pulmonata: Gastropoda) using mitochondrial, nuclear and morphological markers. Molecular Phylogenetics and Evolution, 2009, 52, 643-659.	2.7	34
59	Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1883-1888.	2.6	229
60	The Role of Mineral, Living and Artificial Substrata in the Development of Subtidal Assemblages. Ecological Studies, 2009, , 19-37.	1.2	12
61	Establishment and persistence of species-rich patches in a species-poor landscape: role of a structure-forming subtidal barnacle. Marine Ecology - Progress Series, 2009, 380, 187-198.	1.9	5
62	Differences in soft-sediment macrobenthic assemblages invaded by Caulerpa taxifolia compared to uninvaded habitats. Marine Ecology - Progress Series, 2009, 380, 59-71.	1.9	51
63	Heart of glass: spicule armament and physical defense in temperate reef sponges. Marine Ecology - Progress Series, 2008, 372, 77-86.	1.9	9
64	Anchors aweigh: Fragment generation of invasive Caulerpa taxifolia by boat anchors and its resistance to desiccation. Aquatic Botany, 2007, 87, 196-202.	1.6	28
65	The importance of spatial scale for the conservation of tidal flat macrobenthos: An example from New South Wales, Australia. Biological Conservation, 2007, 134, 310-320.	4.1	36
66	Diet and feeding periodicity of Cox's gudgeon Gobiomorphus coxii (Krefft) in a south-eastern Australian stream. Journal of Fish Biology, 2007, 71, 993-1006.	1.6	5
67	Spatial scale and the detection of impacts on the seagrass Posidonia australis following pier construction in an embayment in southeastern Australia. Estuarine, Coastal and Shelf Science, 2007, 74, 297-305.	2.1	10
68	Does spawning behavior minimize exposure to environmental stressors for encapsulated gastropod embryos on rocky shores?. Marine Biology, 2007, 152, 991-1002.	1.5	18
69	Isolation and NMR spectroscopic clarification of the alkaloid 1,3,7-trimethylguanine from the ascidianEudistoma maculosum. Natural Product Research, 2006, 20, 479-483.	1.8	4
70	DEMOGRAPHIC FEEDBACK BETWEEN CLONAL GROWTH AND FRAGMENTATION IN AN INVASIVE SEAWEED. Ecology, 2006, 87, 1744-1754.	3.2	47
71	UV-Induced Mortality in Encapsulated Intertidal Embryos: Are Mycosporine-Like Amino Acids an Effective Sunscreen?. Journal of Chemical Ecology, 2006, 32, 993-1004.	1.8	13
72	Experimental manipulation of shade, silt, nutrients and salinity on the temperate reef sponge Cymbastela concentrica. Marine Ecology - Progress Series, 2006, 307, 143-154.	1.9	62

#	Article	IF	CITATIONS
73	Role of habitat complexity in structuring temperate rockpool ichthyofaunas. Marine Ecology - Progress Series, 2006, 313, 227-239.	1.9	31
74	Sampling patchily distributed taxa: a case study using cost–benefit analyses for sponges and ascidians in coastal lakes of New South Wales, Australia. Marine Ecology - Progress Series, 2006, 319, 55-64.	1.9	9
75	Structure and dynamics of sponge-dominated assemblages on exposed and sheltered temperate reefs. Marine Ecology - Progress Series, 2006, 321, 19-30.	1.9	23
76	Synergistic effects associated with climate change and the development of rocky shore molluscs. Global Change Biology, 2005, 11, 515-522.	9.5	112
77	Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. Journal of Experimental Marine Biology and Ecology, 2005, 316, 29-44.	1.5	102
78	Responses of common SE Australian herbivores to three suspected invasive Caulerpa spp Marine Biology, 2005, 146, 859-868.	1.5	54
79	A Quantitative Survey of Mycosporine-Like Amino Acids (MAAS) in Intertidal Egg Masses from Temperate Rocky Shores. Journal of Chemical Ecology, 2005, 31, 2417-2438.	1.8	25
80	Passive Flow Through an Unstalked Intertidal Ascidian: Orientation and Morphology Enhance Suspension Feeding in Pyura stolonifera. Biological Bulletin, 2004, 207, 217-224.	1.8	15
81	UV effects that come and go: a global comparison of marine benthic community level impacts. Global Change Biology, 2004, 10, 1962-1972.	9.5	52
82	Gastropod egg mass deposition on a temperate, wave-exposed coastline in New South Wales, Australia: implications for intertidal conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2004, 14, 263-280.	2.0	16
83	Effects of ultraviolet radiation and visible light on the development of encapsulated molluscan embryos. Marine Ecology - Progress Series, 2004, 268, 151-160.	1.9	34
84	Effects of Intertidal Elevation on the Rockpool Ichthyofaunas of Temperate Australia. Environmental Biology of Fishes, 2003, 68, 197-204.	1.0	21
85	Size matters sometimes: wall height and the structure of subtidal benthic invertebrate assemblages in south-eastern Australia and Mediterranean Spain. Journal of Biogeography, 2003, 30, 1797-1807.	3.0	12
86	Reproduction of the turban shell Turbo torquatus Gmelin 1791 (Mollusca : Gastropoda), in New South Wales, Australia. Marine and Freshwater Research, 2002, 53, 85.	1.3	14
87	Identifying hotspots of molluscan species richness on rocky intertidal reefs. Biodiversity and Conservation, 2002, 11, 1959-1973.	2.6	26
88	Chemical Defense in the Egg Masses of Benthic Invertebrates: An Assessment of Antibacterial Activity in 39 Mollusks and 4 Polychaetes. Journal of Invertebrate Pathology, 2001, 78, 109-118.	3.2	105
89	Indole Derivatives from the Egg Masses of Muricid Molluscs. Molecules, 2001, 6, 70-78.	3.8	55
90	Title is missing!. Journal of Chemical Ecology, 2000, 26, 1037-1050.	1.8	59

#	Article	IF	CITATIONS
91	Conservation of sessile marine invertebrates: you do not know what you have got until it is gone. , 1999, , 325-329.		3
92	Antifouling defence in a subtidal guild of temperate zone encrusting invertebrates. Biofouling, 1998, 12, 305-320.	2.2	11
93	Rapid changes in encrusting marine assemblages exposed to anthropogenic point-source pollution:a 'Beyond BACI' approach. Marine Ecology - Progress Series, 1998, 163, 213-224.	1.9	67
94	Habitat associated differences in temperate sponge assemblages:. Journal of Experimental Marine Biology and Ecology, 1997, 213, 199-213.	1.5	38
95	Rapid invasion of a sponge-dominated deep-reef by Caulerpa scalpelliformis (Chlorophyta) in Botany Bay, New South Wales. Austral Ecology, 1997, 22, 146-150.	1.5	41
96	Genetic evidence for contrasting patterns of dispersal in solitary and colonial ascidians. Marine Biology, 1997, 130, 51-61.	1.5	68
97	Two levels of spacing and limits to local population density for settled larvae of the ascidian Clavelina moluccensis: a nearest-neighbour analysis. Oecologia, 1996, 108, 701-707.	2.0	6
98	Patterns in sponge (Porifera) assemblages on temperate coastal reefs off Sydney, Australia. Marine and Freshwater Research, 1996, 47, 897.	1.3	43
99	The encrusting spongeHalisarca laxus: population genetics and association with the ascidianPyura spinifera. Marine Biology, 1996, 126, 27-33.	1.5	17
100	Association among ascidians: facilitation of recruitment inPyura spinifera. Marine Biology, 1996, 126, 35-41.	1.5	21
101	Selection of substrata by juvenile Choromytilus chorus (Mytilidae): are chemical cues important?. Journal of Experimental Marine Biology and Ecology, 1995, 191, 167-180.	1.5	36
102	Epibiosis in a guild of sessile subtidal invertebrates in south-eastern Australia: a quantitative survey. Journal of Experimental Marine Biology and Ecology, 1994, 177, 1-14.	1.5	33
103	Alkaloids and ascidian chemical defense: Evidence for the ecological role of natural products fromEudistoma olivaceum. Marine Biology, 1991, 111, 375-379.	1.5	57
104	Settlement behaviour of ascidian larvae: preliminary evidence for inhibition by sponge allelochemicals. Marine Ecology - Progress Series, 1991, 72, 117-123.	1.9	59
105	Inhibition of larval settlement by natural products from the ascidian,Eudistoma olivaceum (Van) Tj ETQq1 1 0.78	4314 rgB⊺ 1.8	「/Qyerlock 1
106	Interspecific differences in fouling of two congeneric ascidians (Eudistoma olivaceum and E.) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 142
107	Analysis and interpretation of the recruit-settler relationship. Journal of Experimental Marine Biology and Ecology, 1989, 134, 197-202.	1.5	24
108	Direct observations of larval dispersal in the colonial ascidian Podoclavella moluccensis Sluiter: evidence for closed populations. Journal of Experimental Marine Biology and Ecology, 1989, 127, 189-203.	1.5	101

#	Article	IF	CITATIONS
109	Epibiosis of Marine Algae and Benthic Invertebrates: Natural Products Chemistry and Other Mechanisms Inhibiting Settlement and Overgrowth. Bioorganic Marine Chemistry, 1989, , 85-114.	0.2	177
110	Contrasting population dynamics and life histories in two populations of the colonial subtidal ascidian Podoclavella moluccensis. Marine Ecology - Progress Series, 1989, 51, 107-119.	1.9	11
111	Colony regeneration following damage and size-dependent mortality in the Australian ascidian Podoclavella moluccensis Sluiter. Journal of Experimental Marine Biology and Ecology, 1988, 123, 269-285.	1.5	27
112	Effects of variation in initial settlement on distribution and abundance of Podoclavella moluccensis Sluiter. Journal of Experimental Marine Biology and Ecology, 1988, 117, 157-167.	1.5	32
113	Variation in recruitment of the subtidal colonial ascidian Podoclavella cylindrica (Quoy & Gaimard): the rÃ1e of substratum choice and early survival. Journal of Experimental Marine Biology and Ecology, 1987, 106, 57-71.	1.5	57