Matthew C Canver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6293744/publications.pdf Version: 2024-02-01

MATTHEW C CANVER

#	Article	IF	CITATIONS
1	CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nature Biotechnology, 2019, 37, 224-226.	9.4	891
2	BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 2015, 527, 192-197.	13.7	726
3	An Erythroid Enhancer of <i>BCL11A</i> Subject to Genetic Variation Determines Fetal Hemoglobin Level. Science, 2013, 342, 253-257.	6.0	518
4	Analyzing CRISPR genome-editing experiments with CRISPResso. Nature Biotechnology, 2016, 34, 695-697.	9.4	410
5	Characterization of Genomic Deletion Efficiency Mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 Nuclease System in Mammalian Cells*. Journal of Biological Chemistry, 2014, 289, 21312-21324.	1.6	309
6	Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science, 2016, 351, 285-289.	6.0	260
7	Generation of Genomic Deletions in Mammalian Cell Lines via CRISPR/Cas9. Journal of Visualized Experiments, 2015, , e52118.	0.2	123
8	miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction. Molecular Therapy, 2015, 23, 1465-1474.	3.7	101
9	Genome-wide CRISPR-Cas9 Screen Identifies Leukemia-Specific Dependence on a Pre-mRNA Metabolic Pathway Regulated by DCPS. Cancer Cell, 2018, 33, 386-400.e5.	7.7	99
10	Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci. Nature Genetics, 2017, 49, 625-634.	9.4	96
11	Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11257-E11266.	3.3	96
12	Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nature Genetics, 2019, 51, 1149-1159.	9.4	83
13	EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood, 2015, 126, 1930-1939.	0.6	76
14	Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments. Nature Protocols, 2018, 13, 946-986.	5.5	70
15	PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells. Cell Reports, 2015, 12, 1456-1470.	2.9	64
16	High-Throughput Approaches to Pinpoint Function within the Noncoding Genome. Molecular Cell, 2017, 68, 44-59.	4.5	54
17	Customizing the genome as therapy for the \hat{l}^2 -hemoglobinopathies. Blood, 2016, 127, 2536-2545.	0.6	48
18	CRISPRitz: rapid, high-throughput and variant-aware <i>in silico</i> off-target site identification for CRISPR genome editing. Bioinformatics, 2020, 36, 2001-2008.	1.8	41

MATTHEW C CANVER

#	Article	IF	CITATIONS
19	Interferon-Î \pm signaling promotes embryonic HSC maturation. Blood, 2016, 128, 204-216.	0.6	36
20	TAF5L and TAF6L Maintain Self-Renewal of Embryonic Stem Cells via the MYC Regulatory Network. Molecular Cell, 2019, 74, 1148-1163.e7.	4.5	36
21	CRISPRO: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biology, 2018, 19, 169.	3.8	34
22	CRISPR-SURF: discovering regulatory elements by deconvolution of CRISPR tiling screen data. Nature Methods, 2018, 15, 992-993.	9.0	33
23	Angiopoietin-like proteins stimulate HSPC development through interaction with notch receptor signaling. ELife, 2015, 4, .	2.8	30
24	Functional interrogation of non-coding DNA through CRISPR genome editing. Methods, 2017, 121-122, 118-129.	1.9	28
25	Technologies and Computational Analysis Strategies for CRISPR Applications. Molecular Cell, 2020, 79, 11-29.	4.5	28
26	Impact of Genetic Variation on CRISPR-Cas Targeting. CRISPR Journal, 2018, 1, 159-170.	1.4	24
27	Downregulation of Endothelin Receptor B Contributes to Defective B Cell Lymphopoiesis in Trisomy 21 Pluripotent Stem Cells. Scientific Reports, 2018, 8, 8001.	1.6	15
28	Improved Performance of a Rapid Immunochromatographic Assay for Detection of PBP2a in Non-Staphylococcus aureus Staphylococcal Species. Journal of Clinical Microbiology, 2019, 57, .	1.8	13
29	Histamine H1 and H2 receptor–mediated vasoreactivity of human internal thoracic and radial arteries. Surgery, 2004, 136, 458-463.	1.0	9
30	Optimization of Bcl11a Knockdown By miRNA Scaffold Embedded Shrnas Leading to Enhanced Induction of Fetal Hemoglobin in Erythroid Cells for the Treatment of Beta-Hemoglobinopathies. Blood, 2014, 124, 2150-2150.	0.6	8
31	Novel mathematical algorithm for pupillometric data analysis. Computer Methods and Programs in Biomedicine, 2014, 113, 221-225.	2.6	7
32	A saturating mutagenesis CRISPR-Cas9–mediated functional genomic screen identifies cis- and trans-regulatory elements of Oct4 in murine ESCs. Journal of Biological Chemistry, 2020, 295, 15797-15809.	1.6	6
33	Performance of Five Commercial Identification Platforms for Identification of Staphylococcus delphini. Journal of Clinical Microbiology, 2019, 57, .	1.8	5
34	Thawed solvent/detergentâ€ŧreated plasma demonstrates comparable clinical efficacy to thawed plasma. Transfusion, 2020, 60, 1940-1949.	0.8	4
35	DrugThatGene: integrative analysis to streamline the identification of druggable genes, pathways and protein complexes from CRISPR screens. Bioinformatics, 2019, 35, 1981-1984.	1.8	3
36	Graduate School: The Problem of Choice [Perspectives on Graduate Life]. IEEE Pulse, 2012, 3, 8-10.	0.1	1

MATTHEW C CANVER

#	Article	IF	CITATIONS
37	Fine-Mapping and Genome Editing Reveal An Essential Erythroid Enhancer At The HbF-Associated BCL11A Locus. Blood, 2013, 122, 437-437.	0.6	1
38	Genome-Wide CRISPR/Cas9 Screen Reveals That the Dcps Scavenger Decapping Enzyme Is Essential for AML Cell Survival. Blood, 2017, 130, 782-782.	0.6	1
39	Bioengineering Training in Medical Education [Perspectives on Graduate Life. IEEE Pulse, 2010, 1, 9-11.	0.1	0
40	Looking Forward [Perspectives on Graduate Life]. IEEE Pulse, 2013, 4, 11-65.	0.1	0
41	Independence Day [Perspectives on Graduate Life]. IEEE Pulse, 2013, 4, 12-12.	0.1	0
42	Making the big decision [Perspectives on Graduate Life]. IEEE Pulse, 2013, 4, 9-10.	0.1	0
43	Another One in the Books [Perspectives on Graduate Life]. IEEE Pulse, 2013, 4, 8-62.	0.1	0
44	Visual evidence of a hemolytic transfusion reaction identified by blood bank testing after emergency blood transfusion. Transfusion, 2019, 59, 3301-3302.	0.8	0
45	Accelerated thrombin times are associated with thrombotic risk. American Journal of Hematology, 2020, 95, E113-E114.	2.0	0
46	Rational Targeting of a NuRD Sub-Complex for Fetal Hemoglobin Induction Following Comprehensive in Situ Mutagenesis. Blood, 2018, 132, 2342-2342.	0.6	0