Wenkai Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6293510/publications.pdf

Version: 2024-02-01

74163 53794 6,532 105 45 75 citations h-index g-index papers 108 108 108 7378 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids, 2017, 49, 2091-2098.	2.7	327
2	Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in highâ€fat dietâ€fed mice. Journal of Pineal Research, 2018, 65, e12524.	7.4	314
3	Potential Mechanisms Connecting Purine Metabolism and Cancer Therapy. Frontiers in Immunology, 2018, 9, 1697.	4.8	275
4	Betaine in Inflammation: Mechanistic Aspects and Applications. Frontiers in Immunology, 2018, 9, 1070.	4.8	252
5	<scp> </scp> â€Cysteine metabolism and its nutritional implications. Molecular Nutrition and Food Research, 2016, 60, 134-146.	3.3	235
6	Dietary Arginine Supplementation of Mice Alters the Microbial Population and Activates Intestinal Innate Immunity. Journal of Nutrition, 2014, 144, 988-995.	2.9	179
7	Melatonin signaling in <scp>T</scp> cells: Functions and applications. Journal of Pineal Research, 2017, 62, e12394.	7.4	154
8	Melatonin in macrophage biology: Current understanding and future perspectives. Journal of Pineal Research, 2019, 66, e12547.	7.4	152
9	Melatonin alleviates weanling stress in mice: Involvement of intestinal microbiota. Journal of Pineal Research, 2018, 64, e12448.	7.4	133
10	Serum Amino Acids Profile and the Beneficial Effects of L-Arginine or L-Glutamine Supplementation in Dextran Sulfate Sodium Colitis. PLoS ONE, 2014, 9, e88335.	2.5	128
11	Effects of Dietary Supplementation with Glutamate and Aspartate on Diquat-Induced Oxidative Stress in Piglets. PLoS ONE, 2015, 10, e0122893.	2.5	128
12	Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation. BioMed Research International, 2018, 2018, 1-13.	1.9	127
13	Glutamine Metabolism in Macrophages: A Novel Target for Obesity/Type 2 Diabetes. Advances in Nutrition, 2019, 10, 321-330.	6.4	121
14	Ochratoxin A induces liver inflammation: involvement of intestinal microbiota. Microbiome, 2019, 7, 151.	11.1	119
15	Dietary arginine supplementation enhances intestinal expression of SLC7A7 and SLC7A1 and ameliorates growth depression in mycotoxin-challenged pigs. Amino Acids, 2014, 46, 883-892.	2.7	113
16	Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection. Amino Acids, 2012, 42, 2089-2094.	2.7	112
17	Hydrogen peroxide-induced oxidative stress activates NF-κB and Nrf2/Keap1 signals and triggers autophagy in piglets. RSC Advances, 2015, 5, 15479-15486.	3.6	112
18	Effects of Metabolites Derived From Gut Microbiota and Hosts on Pathogens. Frontiers in Cellular and Infection Microbiology, 2018, 8, 314.	3.9	110

#	Article	IF	CITATIONS
19	Amino-acid transporters in T-cell activation and differentiation. Cell Death and Disease, 2017, 8, e2655-e2655.	6.3	102
20	Dietary l-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids, 2014, 46, 2403-2413.	2.7	98
21	Lysine Restriction Affects Feed Intake and Amino Acid Metabolism via Gut Microbiome in Piglets. Cellular Physiology and Biochemistry, 2017, 44, 1749-1761.	1.6	98
22	mTORC1 signaling and ILâ€17 expression: Defining pathways and possible therapeutic targets. European Journal of Immunology, 2016, 46, 291-299.	2.9	91
23	Amino Acids As Mediators of Metabolic Cross Talk between Host and Pathogen. Frontiers in Immunology, 2018, 9, 319.	4.8	87
24	Cecropin A Alleviates Inflammation Through Modulating the Gut Microbiota of C57BL/6 Mice With DSS-Induced IBD. Frontiers in Microbiology, 2019, 10, 1595.	3.5	79
25	The application of antimicrobial peptides as growth and health promoters for swine. Journal of Animal Science and Biotechnology, 2015, 6, 19.	5.3	75
26	Dietary supplementation with l-glutamate and l-aspartate alleviates oxidative stress in weaned piglets challenged with hydrogen peroxide. Amino Acids, 2016, 48, 53-64.	2.7	74
27	Glutamine promotes intestinal SIgA secretion through intestinal microbiota and ILâ€13. Molecular Nutrition and Food Research, 2016, 60, 1637-1648.	3.3	72
28	Dietary l-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus. Amino Acids, 2013, 45, 479-488.	2.7	71
29	Intestinal Microbiota-Derived GABA Mediates Interleukin-17 Expression during Enterotoxigenic Escherichia coli Infection. Frontiers in Immunology, 2016, 7, 685.	4.8	70
30	Administration of Exogenous Melatonin Improves the Diurnal Rhythms of the Gut Microbiota in Mice Fed a High-Fat Diet. MSystems, 2020, 5, .	3.8	69
31	Effects of Long-Term Protein Restriction on Meat Quality, Muscle Amino Acids, and Amino Acid Transporters in Pigs. Journal of Agricultural and Food Chemistry, 2017, 65, 9297-9304.	5.2	68
32	Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities. Microbiome, 2021, 9, 60.	11.1	68
33	Growth performance, serum biochemical profile, jejunal morphology, and the expression of nutrients transporter genes in deoxynivalenol (DON)- challenged growing pigs. BMC Veterinary Research, 2015, 11, 144.	1.9	66
34	Alterations of amino acid metabolism in osteoarthritis: its implications for nutrition and health. Amino Acids, 2016, 48, 907-914.	2.7	66
35	Therapeutic Effects of Glutamic Acid in Piglets Challenged with Deoxynivalenol. PLoS ONE, 2014, 9, e100591.	2.5	65
36	Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens. Theranostics, 2020, 10, 10697-10711.	10.0	60

#	Article	IF	CITATIONS
37	l-Glutamine and l-arginine protect against enterotoxigenic Escherichia coli infection via intestinal innate immunity in mice. Amino Acids, 2017, 49, 1945-1954.	2.7	56
38	Methionine restriction on oxidative stress and immune response in dss-induced colitis mice. Oncotarget, 2017, 8, 44511-44520.	1.8	55
39	Glutamine-Induced Secretion of Intestinal Secretory Immunoglobulin A: A Mechanistic Perspective. Frontiers in Immunology, 2016, 7, 503.	4.8	54
40	<scp>I</scp> -Serine Lowers the Inflammatory Responses during Pasteurella multocida Infection. Infection and Immunity, 2019, 87, .	2.2	52
41	Implication of G Protein-Coupled Receptor 43 in Intestinal Inflammation: A Mini-Review. Frontiers in Immunology, 2018, 9, 1434.	4.8	51
42	Dietary l-Arginine Supplementation Protects Weanling Pigs from Deoxynivalenol-Induced Toxicity. Toxins, 2015, 7, 1341-1354.	3.4	49
43	Transcriptomic Analysis on Responses of Murine Lungs to Pasteurella multocida Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 251.	3.9	49
44	Betaine Inhibits Interleukin- $1\hat{l}^2$ Production and Release: Potential Mechanisms. Frontiers in Immunology, 2018, 9, 2670.	4.8	49
45	Mouse intestinal innate immune responses altered by enterotoxigenic Escherichia coli (ETEC) infection. Microbes and Infection, 2014, 16, 954-961.	1.9	48
46	Dietary Glutamate Supplementation Ameliorates Mycotoxin-Induced Abnormalities in the Intestinal Structure and Expression of Amino Acid Transporters in Young Pigs. PLoS ONE, 2014, 9, e112357.	2.5	47
47	The immunological function of GABAergic system. Frontiers in Bioscience - Landmark, 2017, 22, 1162-1172.	3.0	47
48	Protein restriction and cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 256-262.	7.4	45
49	Dietary l-glutamine supplementation increases Pasteurella multocida burden and the expression of its major virulence factors in mice. Amino Acids, 2013, 45, 947-955.	2.7	44
50	GABA transporter sustains IL- $\hat{l^2}$ production in macrophages. Science Advances, 2021, 7, .	10.3	44
51	Dietary l-proline supplementation confers immunostimulatory effects on inactivated Pasteurella multocida vaccine immunized mice. Amino Acids, 2013, 45, 555-561.	2.7	43
52	Differential Analysis of Gut Microbiota Correlated With Oxidative Stress in Sows With High or Low Litter Performance During Lactation. Frontiers in Microbiology, 2018, 9, 1665.	3.5	43
53	Effects of dietary gamma-aminobutyric acid supplementation on the intestinal functions in weaning piglets. Food and Function, 2019, 10, 366-378.	4.6	42
54	Metabolic Regulation of Methionine Restriction in Diabetes. Molecular Nutrition and Food Research, 2018, 62, e1700951.	3.3	41

#	Article	IF	CITATIONS
55	Unraveling the association of fecal microbiota and oxidative stress with stillbirth rate of sows. Theriogenology, 2019, 136, 131-137.	2.1	41
56	Polyamines: therapeutic perspectives in oxidative stress and inflammatory diseases. Amino Acids, 2017, 49, 1457-1468.	2.7	40
57	An NMR-Based Metabolomic Approach to Investigate the Effects of Supplementation with Glutamic Acid in Piglets Challenged with Deoxynivalenol. PLoS ONE, 2014, 9, e113687.	2.5	40
58	Pyrrolidine Dithiocarbamate Inhibits NF-KappaB Activation and Upregulates the Expression of Gpx1, Gpx4, Occludin, and ZO-1 in DSS-Induced Colitis. Applied Biochemistry and Biotechnology, 2015, 177, 1716-1728.	2.9	39
59	Dietary arginine supplementation enhances immune responses to inactivated <i>Pasteurella multocida </i> vaccination in mice. British Journal of Nutrition, 2013, 109, 867-872.	2.3	38
60	Effects of Lysine deficiency and Lys-Lys dipeptide on cellular apoptosis and amino acids metabolism. Molecular Nutrition and Food Research, 2017, 61, 1600754.	3.3	38
61	Hyperhomocysteinemia and cardiovascular disease in animal model. Amino Acids, 2018, 50, 3-9.	2.7	34
62	Cecropin A Modulates Tight Junction-Related Protein Expression and Enhances the Barrier Function of Porcine Intestinal Epithelial Cells by Suppressing the MEK/ERK Pathway. International Journal of Molecular Sciences, 2018, 19, 1941.	4.1	34
63	Serine Supports IL- $\hat{\Pi}^2$ Production in Macrophages Through mTOR Signaling. Frontiers in Immunology, 2020, 11, 1866.	4.8	32
64	Chitosan lowers body weight through intestinal microbiota and reduces IL-17 expression via mTOR signalling. Journal of Functional Foods, 2016, 22, 166-176.	3.4	31
65	Metabolomic Profiles Reveal Potential Factors that Correlate with Lactation Performance in Sow Milk. Scientific Reports, 2018, 8, 10712.	3.3	31
66	Glutamine modifies immune responses of mice infected with porcine circovirus type 2. British Journal of Nutrition, 2013, 110, 1053-1060.	2.3	30
67	Slc6a13 deficiency promotes Th17 responses during intestinal bacterial infection. Mucosal Immunology, 2019, 12, 531-544.	6.0	30
68	Dietary <i>Saccharomyces cerevisiae</i> Cell Wall Extract Supplementation Alleviates Oxidative Stress and Modulates Serum Amino Acids Profiles in Weaned Piglets. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-7.	4.0	29
69	Glutamine supplementation improves intestinal cell proliferation and stem cell differentiation in weanling mice. Food and Nutrition Research, 2018, 62, .	2.6	29
70	Melatonin and other indoles show antiviral activities against swine coronaviruses in vitro at pharmacological concentrations. Journal of Pineal Research, 2021, 71, e12754.	7.4	29
71	Metabolomics study of metabolic variations in enterotoxigenic Escherichia coli-infected piglets. RSC Advances, 2015, 5, 59550-59555.	3.6	28
72	Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli. Amino Acids, 2015, 47, 2199-2204.	2.7	28

#	Article	IF	Citations
73	Exploring polyamines: Functions in embryo/fetal development. Animal Nutrition, 2017, 3, 7-10.	5.1	28
74	Effects of dietary l-glutamine supplementation on specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. Amino Acids, 2014, 46, 2365-2375.	2.7	27
75	Proteome analysis for the global proteins in the jejunum tissues of enterotoxigenic Escherichia coli -infected piglets. Scientific Reports, 2016, 6, 25640.	3.3	26
76	Effect of Dietary Selenium Yeast Supplementation on Porcine Circovirus Type 2 (PCV2) Infections in Mice. PLoS ONE, 2015, 10, e0115833.	2.5	25
77	Toxicity assessment of hydrogen peroxide on Toll-like receptor system, apoptosis, and mitochondrial respiration in piglets and IPEC-J2 cells. Oncotarget, 2017, 8, 3124-3131.	1.8	25
78	Alpha-ketoglutarate (AKG) lowers body weight and affects intestinal innate immunity through influencing intestinal microbiota. Oncotarget, 2017, 8, 38184-38192.	1.8	25
79	Effects of dietary tryptophan supplementation in the acetic acid-induced colitis mouse model. Food and Function, 2018, 9, 4143-4152.	4.6	24
80	Draft Genome Sequence of Enterotoxigenic Escherichia coli Strain W25K. Genome Announcements, 2014, 2, .	0.8	23
81	Natural Products as Targeted Modulators of the Immune System. Journal of Immunology Research, 2018, 2018, 1-2.	2.2	22
82	Enterotoxigenic Escherichia coli infection promotes apoptosis in piglets. Microbial Pathogenesis, 2018, 125, 290-294.	2.9	22
83	GABA attenuates ETEC-induced intestinal epithelial cell apoptosis involving GABA _A R signaling and the AMPK-autophagy pathway. Food and Function, 2019, 10, 7509-7522.	4.6	22
84	Interferon Tau Affects Mouse Intestinal Microbiota and Expression of IL-17. Mediators of Inflammation, 2016, 2016, 1-9.	3.0	21
85	Glutamine metabolism in Th17/Treg cell fate: applications in Th17 cell-associated diseases. Science China Life Sciences, 2021, 64, 221-233.	4.9	20
86	Dietary supplementation with proline confers a positive effect in both porcine circovirus-infected pregnant and non-pregnant mice. British Journal of Nutrition, 2013, 110, 1492-1499.	2.3	19
87	Melatonin alters amino acid metabolism and inflammatory responses in colitis mice. Amino Acids, 2017, 49, 2065-2071.	2.7	17
88	Taurine Attenuates Streptococcus uberis-Induced Bovine Mammary Epithelial Cells Inflammation via Phosphoinositides/Ca2+ Signaling. Frontiers in Immunology, 2019, 10, 1825.	4.8	17
89	The role of bacterial cell envelope structures in acid stress resistance in E. coli. Applied Microbiology and Biotechnology, 2020, 104, 2911-2921.	3.6	17
90	Escherichia coli aggravates endoplasmic reticulum stress and triggers CHOP-dependent apoptosis in weaned pigs. Amino Acids, 2017, 49, 2073-2082.	2.7	16

#	Article	IF	CITATIONS
91	Impacts of Amino Acids on the Intestinal Defensive System. Advances in Experimental Medicine and Biology, 2020, 1265, 133-151.	1.6	16
92	DNA vaccine encoding the major virulence factors of Shiga toxin type 2e (Stx2e)-expressing Escherichia coli induces protection in mice. Vaccine, 2013, 31, 367-372.	3.8	15
93	Melatonergic signalling instructs transcriptional inhibition of IFNGR2 to lessen interleukinâ€1βâ€dependent inflammation. Clinical and Translational Medicine, 2022, 12, e716.	4.0	14
94	DNA Methylation and the Potential Role of Methyl-Containing Nutrients in Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-7.	4.0	13
95	The different roles of <i>hcp₁</i> and <i>hcp₂</i> of the type VI secretion system in <i>Escherichia coli</i> strain CE129. Journal of Basic Microbiology, 2018, 58, 938-946.	3.3	12
96	Effects of dietary gamma-aminobutyric acid supplementation on amino acid profile, intestinal immunity, and microbiota in ETEC-challenged piglets. Food and Function, 2020, 11, 9067-9074.	4.6	12
97	Melatonin inhibits Gram-negative pathogens by targeting citrate synthase. Science China Life Sciences, 2022, 65, 1430-1444.	4.9	12
98	Aspartate Metabolism Facilitates IL- $1\hat{l}^2$ Production in Inflammatory Macrophages. Frontiers in Immunology, 2021, 12, 753092.	4.8	11
99	Transcriptomic analysis on responses of the liver and kidney of finishing pigs fed cadmium contaminated rice. Journal of the Science of Food and Agriculture, 2018, 98, 2964-2972.	3.5	9
100	Evaluation of the Mechanisms Underlying Amino Acid and Microbiota Interactions in Intestinal Infections Using Germ-Free Animals. Infectious Microbes & Diseases, 2021, 3, 79-86.	1.3	8
101	Porcine circovirus type 2 affects the serum profile of amino acids and intestinal expression of amino acid transporters in mice. RSC Advances, 2015, 5, 73651-73659.	3.6	4
102	The Regulation of Innate Immunity by Nutritional Factors. BioMed Research International, 2016, 2016, 1-2.	1.9	4
103	Perspective: Methionine Restriction–Induced Longevity—A Possible Role for Inhibiting the Synthesis of Bacterial Quorum Sensing Molecules. Advances in Nutrition, 2020, 11, 773-783.	6.4	4
104	Insights into host-microbe interaction: What can we do for the swine industry?. Animal Nutrition, 2021, 7, 17-23.	5.1	4
105	PSXIII-23 Dietary glutamine, glutamate, and aspartate supplementation improves morphology and intercellular junction of small intestine in piglets. Journal of Animal Science, 2019, 97, 472-474.	0.5	0