
Fengyi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6292887/publications.pdf Version: 2024-02-01

FENCYLL

#	Article	IF	CITATIONS
1	Role of clay minerals in controlling phosphorus availability in a subtropical Alfisol. Geoderma, 2022, 409, 115592.	5.1	17
2	Microstructure of Al-substituted goethite and its adsorption performance for Pb(II) and As(V). Science of the Total Environment, 2021, 790, 148202.	8.0	11
3	Preference of Co over Al for substitution of Fe in goethite (α-FeOOH) structure: Mechanism revealed from EXAFS, XPS, DFT and linear free energy correlation model. Chemical Geology, 2020, 532, 119378.	3.3	14
4	Coupled morphological and structural evolution of δ-MnO ₂ to α-MnO ₂ through multistage oriented assembly processes: the role of Mn(<scp>iii</scp>). Environmental Science: Nano, 2020, 7, 238-249.	4.3	10
5	Effects of aluminum substitution on the surface charge of colloidal goethite particles: experiments and MUSIC modeling. Environmental Science and Pollution Research, 2020, 27, 38397-38406.	5.3	11
6	Al-substitution-induced defect sites enhance adsorption of Pb ²⁺ on hematite. Environmental Science: Nano, 2019, 6, 1323-1331.	4.3	26
7	Phosphate speciation on Al-substituted goethite: ATR-FTIR/2D-COS and CD-MUSIC modeling. Environmental Science: Nano, 2019, 6, 3625-3637.	4.3	25
8	Effect of Soil Fulvic and Humic Acids on Pb Binding to the Goethite/Solution Interface: Ligand Charge Distribution Modeling and Speciation Distribution of Pb. Environmental Science & Technology, 2018, 52, 1348-1356.	10.0	45
9	CD-MUSIC-EDL Modeling of Pb ²⁺ Adsorption on Birnessites: Role of Vacant and Edge Sites. Environmental Science & Technology, 2018, 52, 10522-10531.	10.0	30
10	Effects of Al3+ doping on the structure and properties of goethite and its adsorption behavior towards phosphate. Journal of Environmental Sciences, 2016, 45, 18-27.	6.1	31
11	Effects of Fe doping on the structures and properties of hexagonal birnessites – Comparison with Co and Ni doping. Geochimica Et Cosmochimica Acta, 2013, 117, 1-15.	3.9	71
12	Characterization of Ni-rich hexagonal birnessite and its geochemical effects on aqueous Pb2+/Zn2+ and As(III). Geochimica Et Cosmochimica Acta, 2012, 93, 47-62.	3.9	83
13	Characterization of Co-doped birnessites and application for removal of lead and arsenite. Journal of Hazardous Materials, 2011, 188, 341-349.	12.4	70
14	Influence of Mn(III) availability on the phase transformation from layered buserite to tunnel-structured todorokite. Clays and Clay Minerals, 2008, 56, 397-403.	1.3	45