Greg L Beilhartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6292124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Attenuated diphtheria toxin mediates siRNA delivery. Science Advances, 2020, 6, .	4.7	15
2	Recognition of Semaphorin Proteins by P.Âsordellii Lethal Toxin Reveals Principles of Receptor Specificity in Clostridial Toxins. Cell, 2020, 182, 345-356.e16.	13.5	29
3	An engineered chimeric toxin that cleaves activated mutant and wild-type RAS inhibits tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16938-16948.	3.3	26
4	bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5791-5800.	3.3	76
5	Exploiting the diphtheria toxin internalization receptor enhances delivery of proteins to lysosomes for enzyme replacement therapy. Science Advances, 2020, 6, .	4.7	6
6	Host-targeted niclosamide inhibits C. difficile virulence and prevents disease in mice without disrupting the gut microbiota. Nature Communications, 2018, 9, 5233.	5.8	40
7	Intracellular Delivery of Human Purine Nucleoside Phosphorylase by Engineered Diphtheria Toxin Rescues Function in Target Cells. Molecular Pharmaceutics, 2018, 15, 5217-5226.	2.3	16
8	Repurposing bacterial toxins for intracellular delivery of therapeutic proteins. Biochemical Pharmacology, 2017, 142, 13-20.	2.0	39
9	Comment on "A small-molecule antivirulence agent for treating <i>Clostridium difficile</i> infection― Science Translational Medicine, 2016, 8, 370tc2.	5.8	15
10	Derivatives of Mesoxalic Acid Block Translocation of HIV-1 Reverse Transcriptase. Journal of Biological Chemistry, 2015, 290, 1474-1484.	1.6	14
11	Small Molecules Take A Big Step Against Clostridium difficile. Trends in Microbiology, 2015, 23, 746-748.	3.5	6
12	Small Molecule Inhibitors of Clostridium difficile Toxin B-Induced Cellular Damage. Chemistry and Biology, 2015, 22, 175-185.	6.2	66
13	Efficient Delivery of Structurally Diverse Protein Cargo into Mammalian Cells by a Bacterial Toxin. Molecular Pharmaceutics, 2015, 12, 2962-2971.	2.3	40
14	Translocation domain mutations affecting cellular toxicity identify the <i>Clostridium difficile</i> toxin B pore. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3721-3726.	3.3	63
15	Inhibition of the Ribonuclease H Activity of HIV-1 Reverse Transcriptase by GSK5750 Correlates with Slow Enzyme-Inhibitor Dissociation. Journal of Biological Chemistry, 2014, 289, 16270-16277.	1.6	26
16	Telbivudine Exerts no Antiviral Activity against HIV-1 <i>In Vitro</i> and in Humans. Antiviral Therapy, 2011, 16, 1123-1130.	0.6	3
17	Nuclear translocation of the 1,25D3-MARRS (membrane associated rapid response to steroids) receptor protein and NFκB in differentiating NB4 leukemia cells. Experimental Cell Research, 2010, 316, 1101-1108.	1.2	62
18	Structure-Activity Analysis of Vinylogous Urea Inhibitors of Human Immunodeficiency Virus-Encoded Ribonuclease H. Antimicrobial Agents and Chemotherapy, 2010, 54, 3913-3921.	1.4	44

#	Article	IF	CITATIONS
19	N348I in HIV-1 Reverse Transcriptase Can Counteract the Nevirapine-mediated Bias toward RNase H Cleavage during Plus-strand Initiation. Journal of Biological Chemistry, 2010, 285, 26966-26975.	1.6	28
20	HIV-1 Ribonuclease H: Structure, Catalytic Mechanism and Inhibitors. Viruses, 2010, 2, 900-926.	1.5	74
21	HIV-1 Reverse Transcriptase Can Simultaneously Engage Its DNA/RNA Substrate at Both DNA Polymerase and RNase H Active Sites: Implications for RNase H Inhibition. Journal of Molecular Biology, 2009, 388, 462-474.	2.0	56
22	Connection Domain Mutations N348I and A360V in HIV-1 Reverse Transcriptase Enhance Resistance to 3′-Azido-3′-deoxythymidine through Both RNase H-dependent and -independent Mechanisms. Journal of Biological Chemistry, 2008, 283, 22222-22232.	1.6	78