David M Hoganson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6291571/publications.pdf

Version: 2024-02-01

43 papers

926 citations

687363 13 h-index 454955 30 g-index

44 all docs 44 docs citations

44 times ranked 1295 citing authors

#	Article	IF	CITATIONS
1	Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration. Biomaterials, 2014, 35, 2664-2679.	11.4	137
2	The retention of extracellular matrix proteins and angiogenic and mitogenic cytokines in a decellularized porcine dermis. Biomaterials, 2010, 31, 6730-6737.	11.4	102
3	Preserved extracellular matrix components and retained biological activity in decellularized porcine mesothelium. Biomaterials, 2010, 31, 6934-6940.	11.4	77
4	Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform. Lab on A Chip, 2011, 11, 700-707.	6.0	72
5	Paracorporeal lung assist devices as a bridge to recovery or lung transplantation in neonates and young children. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 420-427.	0.8	72
6	Tissue Engineering and Organ Structure: A Vascularized Approach to Liver and Lung. Pediatric Research, 2008, 63, 520-526.	2.3	71
7	Principles of Biomimetic Vascular Network Design Applied to a Tissue-Engineered Liver Scaffold. Tissue Engineering - Part A, 2010, 16, 1469-1477.	3.1	49
8	Ultra-thin, gas permeable free-standing and composite membranes for microfluidic lung assist devices. Biomaterials, 2011, 32, 3883-3889.	11.4	46
9	Branched vascular network architecture: A new approach to lung assist device technology. Journal of Thoracic and Cardiovascular Surgery, 2010, 140, 990-995.	0.8	39
10	Mitochondrial transplantation for myocardial protection in ex-situâ€'perfused hearts donated after circulatory death. Journal of Heart and Lung Transplantation, 2020, 39, 1279-1288.	0.6	30
11	Poly(glycerol sebacate) films prevent postoperative adhesions and allow laparoscopic placement. Surgery, 2009, 146, 490-497.	1.9	22
12	Neonatal Paracorporeal Lung Assist Device for Respiratory Failure. Annals of Thoracic Surgery, 2013, 95, 692-694.	1.3	18
13	Rapid isolation of bone marrow mesenchymal stromal cells using integrated centrifuge-based technology. Cytotherapy, 2016, 18, 729-739.	0.7	15
14	Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices. Tissue Engineering - Part A, 2015, 21, 2147-2155.	3.1	14
15	Technical Performance Score: A Predictor of Outcomes After the Norwood Procedure. Annals of Thoracic Surgery, 2021, 112, 1290-1297.	1.3	14
16	Recommendations for utilization of the paracorporeal lung assist device in neonates and young children with pulmonary hypertension. Pediatric Transplantation, 2016, 20, 256-270.	1.0	12
17	Mechanical Properties of Autologous Pericardium Change With Fixation Time: Implications for Valve Reconstruction. Seminars in Thoracic and Cardiovascular Surgery, 2019, 31, 852-854.	0.6	12
18	Lung tissue engineering. Frontiers in Bioscience - Landmark, 2014, 19, 1227.	3.0	12

#	Article	IF	CITATIONS
19	Use of an Apical Heart Suction Device for Exposure in Lung Transplantation. Annals of Thoracic Surgery, 2006, 81, 1524-1525.	1.3	10
20	Decellularized extracellular matrix microparticles seeded with bone marrow mesenchymal stromal cells for the treatment of full-thickness cutaneous wounds. Journal of Biomaterials Applications, 2019, 33, 1070-1079.	2.4	9
21	Influence of Vascular Network Design on Gas Transfer in Lung Assist Device Technology. ASAIO Journal, 2011, 57, 533-538.	1.6	8
22	Decellularized extracellular matrix microparticles as a vehicle for cellular delivery in a model of anastomosis healing. Journal of Biomedical Materials Research - Part A, 2016, 104, 1728-1735.	4.0	8
23	Impact of a Composite Valved RV-PA Graft After Stage 1 Palliation. Annals of Thoracic Surgery, 2018, 106, 1452-1459.	1.3	8
24	Pathology of valved venous homografts used as right ventricle-to-pulmonary artery conduits in congenital heart disease surgery. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 342-350.e3.	0.8	8
25	Solvent-free surface modification by initiated chemical vapor deposition to render plasma bonding capabilities to surfaces. Microfluidics and Nanofluidics, 2012, 12, 835-839.	2.2	7
26	Intraoperative conduction mapping in complex congenital heart surgery. JTCVS Techniques, 2022, 12, 159-163.	0.4	7
27	Comparison of two pediatric cases requiring the use of bivalirudin during cardiopulmonary bypass. Perfusion (United Kingdom), 2018, 33, 525-532.	1.0	6
28	Three-Patch Aortic Root Reconstruction With Extended Left Main Coronary Artery Patch Augmentation in Neonates and Infants. Seminars in Thoracic and Cardiovascular Surgery, 2019, 31, 99-101.	0.6	6
29	A bilayer small diameter <i>in vitro</i> vascular model for evaluation of drug induced vascular injury. Biomicrofluidics, 2016, 10, 054116.	2.4	5
30	Physiologic effects of delayed sternal closure following stage 1 palliation. Cardiology in the Young, 2018, 28, 1393-1403.	0.8	5
31	The Role of Elevated Wall Shear Stress in Progression of Pulmonary Vein Stenosis: Evidence from Two Case Studies. Children, 2021, 8, 729.	1.5	5
32	Mycobacterium chimaera Outbreak Management and Outcomes at a Large Pediatric Cardiac Surgery Center. Annals of Thoracic Surgery, 2022, 114, 552-559.	1.3	4
33	The Surgical Prebrief as Part of a Five-Point Comprehensive Approach to Improving Pediatric Cardiac Surgical Team Communication. World Journal for Pediatric & Samp; Congenital Heart Surgery, 2014, 5, 640-642.	0.8	3
34	Flow Preservation of Umbilical Vein for Autologous Shunt and Cardiovascular Reconstruction. Annals of Thoracic Surgery, 2018, 105, 1809-1818.	1.3	3
35	Type B Interrupted Right Aortic Arch: Diagnostic and Surgical Approaches. Annals of Thoracic Surgery, 2019, 107, e41-e43.	1.3	3
36	Patch augmentation of small ascending aorta during stage I procedure reduces the risk of morbidity and mortality. European Journal of Cardio-thoracic Surgery, 2021, , .	1.4	3

#	Article	IF	CITATIONS
37	A Tribute to Ajit Yoganathan's Cardiovascular Fluid Mechanics Lab: A Survey of Its Contributions to Our Understanding of the Physiology and Management of Single-Ventricle Patients. Cardiovascular Engineering and Technology, 2021, , 1.	1.6	2
38	Numerical Simulation and Optimization of Blalock-Taussig Shunt. , 2019, , .		1
39	CFD Evaluation of Blood Flow in an Improved Blalock-Taussig Shunt Using Patient Specific Geometries. , 2020, , .		1
40	Impact of Tissue Engineering in Pediatric Surgery. , 2012, , 27-35.		0
41	Commentary on Tissue-engineered Solutions For Intracardiac Septal Defects. Annals of Surgery, 2017, 265, e13.	4.2	O
42	A Multi-Mode System for Myocardial Functional and Physiological Assessment during Ex Situ Heart Perfusion. Journal of Extra-Corporeal Technology, 2020, 52, 303-313.	0.4	0
43	Hybrid Left Heart Bypass Circuit for Repair of the Descending Aorta in an 8-kg Williams Syndrome Patient. Journal of Extra-Corporeal Technology, 2021, 53, 186-192.	0.4	0