
Doreen A Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6291366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solving the prizeâ€collecting Euclidean Steiner tree problem. International Transactions in Operational Research, 2022, 29, 1479-1501.	1.8	3
2	A mathematical model for mineable pushback designs. International Journal of Mining, Reclamation and Environment, 2021, 35, 523-539.	1.2	2
3	Optimum ramp design in open pit mines. Computers and Operations Research, 2020, 115, 104739.	2.4	8
4	Computing Skeletons for Rectilinearly Convex Obstacles in the Rectilinear Plane. Journal of Optimization Theory and Applications, 2020, 186, 102-133.	0.8	2
5	OPTIMAL LOCATION OF AN UNDERGROUND CONNECTOR USING DISCOUNTED STEINER TREE THEORY. ANZIAM Journal, 2020, 62, 334-351.	0.3	0
6	Computing minimum 2â€edgeâ€connected Steiner networks in the Euclidean plane. Networks, 2019, 73, 89-103.	1.6	2
7	The Fast Heuristic Algorithms and Post-Processing Techniques to Design Large and Low-Cost Communication Networks. IEEE/ACM Transactions on Networking, 2019, 27, 375-388.	2.6	9
8	Stability and active power sharing in droop controlled inverter interfaced microgrids: Effect of clock mismatches. Automatica, 2018, 93, 469-475.	3.0	7
9	Strategic Underground Mine Access Design to Maximise the Net Present Value. , 2018, , 607-624.		3
10	Overcoming the Impact of Clock Drifts on Power Sharing for Microgrids. , 2018, , .		1
11	Minimal curvature-constrained networks. Journal of Global Optimization, 2018, 72, 71-87.	1.1	3
12	Power Sharing in Angle Droop Controlled Microgrids. IEEE Transactions on Power Systems, 2017, 32, 4743-4751.	4.6	45
13	Approximate Euclidean Steiner Trees. Journal of Optimization Theory and Applications, 2017, 172, 845-873.	0.8	2
14	Siting and sizing distributed storage for microgrid applications. , 2017, , .		3
15	Gradient-constrained discounted Steiner trees II: optimally locating a discounted Steiner point. Journal of Global Optimization, 2016, 64, 515-532.	1.1	4
16	A Market Mechanism for Electric Vehicle Charging Under Network Constraints. IEEE Transactions on Smart Grid, 2016, 7, 827-836.	6.2	66
17	Gradient-constrained discounted Steiner trees I: optimal tree configurations. Journal of Global Optimization, 2016, 64, 497-513.	1.1	2
18	Local measurements and virtual pricing signals for residential demand side management. Sustainable Energy, Grids and Networks, 2015, 4, 62-71.	2.3	10

#	Article	IF	CITATIONS
19	Optimal curvature and gradient-constrained directional cost paths in 3-space. Journal of Global Optimization, 2015, 62, 507-527.	1.1	2
20	Maximizing the net present value of a Steiner tree. Journal of Global Optimization, 2015, 62, 391-407.	1.1	6
21	Comment on "A Comparative Testing Study of Commercial 18650-Format Lithium-Ion Battery Cells― [<i>J. Electrochem. Soc.</i> , 162, A1592 (2015)]. Journal of the Electrochemical Society, 2015, 162, Y11-Y12.	1.3	4
22	A Comparative Testing Study of Commercial 18650-Format Lithium-Ion Battery Cells. Journal of the Electrochemical Society, 2015, 162, A1592-A1600.	1.3	84
23	Power sharing correction in angle droop controlled inverter interfaced microgrids. , 2015, , .		7
24	Optimal Charging of Electric Vehicles Taking Distribution Network Constraints Into Account. IEEE Transactions on Power Systems, 2015, 30, 365-375.	4.6	181
25	Generalised k-Steiner Tree Problems in Normed Planes. Algorithmica, 2015, 71, 66-86.	1.0	10
26	The importance of spatial distribution when analysing the impact of electric vehicles on voltage stability in distribution networks. Energy Systems, 2015, 6, 63-84.	1.8	32
27	Coexistence of Reward and Unsupervised Learning During the Operant Conditioning of Neural Firing Rates. PLoS ONE, 2014, 9, e87123.	1.1	4
28	Goal-directed control with cortical units that are gated by both top-down feedback and oscillatory coherence. Frontiers in Neural Circuits, 2014, 8, 94.	1.4	3
29	On the effect of component mismatches in inverter interfaced microgrids. , 2014, , .		2
30	A flowâ€dependent quadratic steiner tree problem in the Euclidean plane. Networks, 2014, 64, 18-28.	1.6	2
31	Improving Underground Mine Access Layouts Using Software Tools. Interfaces, 2014, 44, 195-203.	1.6	8
32	On the history of the Euclidean Steiner tree problem. Archive for History of Exact Sciences, 2014, 68, 327-354.	0.2	58
33	Euclidean Steiner trees optimal with respect to swapping 4-point subtrees. Optimization Letters, 2014, 8, 1337-1359.	0.9	1
34	On making energy demand and network constraints compatible in the last mile of the power grid. Annual Reviews in Control, 2014, 38, 243-258.	4.4	10
35	A distributed electric vehicle charging management algorithm using only local measurements. , 2014, ,		7
36	A geometric characterisation of the quadratic min-power centre. European Journal of Operational Research, 2014, 233, 34-42.	3.5	4

#	Article	IF	CITATIONS
37	Analysis of Constraints for Optimal Electric Vehicle Charging. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 7879-7885.	0.4	2
38	Electric Vehicle Charging: A Noncooperative Game Using Local Measurements. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 5426-5431.	0.4	5
39	The Gilbert arborescence problem. Networks, 2013, 61, 238-247.	1.6	1
40	Optimal curvature-constrained paths for general directional-cost functions. Optimization and Engineering, 2013, 14, 395-416.	1.3	3
41	Electric vehicle charging and grid constraints: Comparing distributed and centralized approaches. , 2013, , .		33
42	Relay augmentation for lifetime extension of wireless sensor networks. IET Wireless Sensor Systems, 2013, 3, 145-152.	1.3	7
43	Modeling and validation of an unbalanced LV network using Smart Meter and SCADA inputs. , 2013, , .		12
44	Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs. PLoS Computational Biology, 2013, 9, e1002897.	1.5	21
45	Modeling reversible self-discharge in series-connected Li-ion battery cells. , 2013, , .		5
46	MINIMAL CURVATURE-CONSTRAINED PATHS IN THE PLANE WITH A CONSTRAINT ON ARCS WITH OPPOSITE ORIENTATIONS. International Journal of Computational Geometry and Applications, 2013, 23, 171-196.	0.3	1
47	Gradient-Constrained Minimum Networks. III. Fixed Topology. Journal of Optimization Theory and Applications, 2012, 155, 336-354.	0.8	3
48	Probability Steiner trees and maximum parsimony in phylogenetic analysis. Journal of Mathematical Biology, 2012, 64, 1225-1251.	0.8	3
49	Curvature-constrained directional-cost paths in the plane. Journal of Global Optimization, 2012, 53, 663-681. The bottleneck 2-connected <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.1</td><td>15</td></mml:math>	1.1	15
50	altimg="si7.gif" display="inline" overflow="scroll"> <mml:mi>k</mml:mi> -Steiner network problem for <mml:math <br="" altimg="si8.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>k</mml:mi><mml:mo>≤/mml:mo><mml:mn>2</mml:mn></mml:mo></mml:math> .	0.5	10
51	Discrete Applied Mathematics, 2012, 160, 1028-1038. STDP encodes oscillation frequencies in the connections of recurrent networks of spiking neurons. BMC Neuroscience, 2012, 13, .	0.8	0
52	Optimum steiner ratio for gradient-constrained networks connecting three points in 3-space, part II: The gradient-constraint m satisfies documentclass{article} usepackage{amsmath,amsfonts,amssymb}pagestyle{empty}egin{document}\$ 1 leq m leq sqrt{3}. Networks, 2011, 57, 354-361.	1.6	0
53	Maximum Parsimony, Substitution Model, and Probability Phylogenetic Trees. Journal of Computational Biology, 2011, 18, 67-80.	0.8	4
54	Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence. Biological Cybernetics, 2010, 103, 365-386.	0.6	27

#	Article	IF	CITATIONS
55	Approximating minimum Steiner point trees in Minkowski planes. Networks, 2010, 56, 244-254.	1.6	4
56	Computing Steiner points for gradient-constrained minimum networks. Discrete Optimization, 2010, 7, 21-31.	0.6	3
57	Representation of input structure in synaptic weights by spike-timing-dependent plasticity. Physical Review E, 2010, 82, 021912.	0.8	8
58	IDENTIFYING STEINER MINIMAL TREES ON FOUR POINTS IN SPACE. Discrete Mathematics, Algorithms and Applications, 2009, 01, 401-411.	0.4	1
59	Reconstruction of Probability Phylogenetic Trees with Substitution Models. , 2009, , .		0
60	COMPUTING STEINER POINTS AND PROBABILITY STEINER POINTS IN â,,"1 AND â,,"2 METRIC SPACES. Discrete Mathematics, Algorithms and Applications, 2009, 01, 541-554.	0.4	1
61	Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity–strengthening correlated input pathways. Biological Cybernetics, 2009, 101, 81-102.	0.6	66
62	Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity—symmetry breaking. Biological Cybernetics, 2009, 101, 103-114.	0.6	40
63	Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity. Biological Cybernetics, 2009, 101, 411-426.	0.6	40
64	Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV. Biological Cybernetics, 2009, 101, 427-444.	0.6	53
65	Gradient-constrained minimum networks (II). Labelled or locally minimal Steiner points. Journal of Global Optimization, 2008, 42, 23-37.	1.1	8
66	Decline design in underground mines using constrained path optimisation. Mining Technology: Transactions of the Institute of Materials, Minerals and Mining Section A, 2008, 117, 93-99.	0.8	14
67	Spike-Timing Dependent Plasticity in Recurrently Connected Networks with Fixed External Inputs. Lecture Notes in Computer Science, 2008, , 102-111.	1.0	0
68	Network modelling of underground mine layout: two case studies. International Transactions in Operational Research, 2007, 14, 143-158.	1.8	8
69	Canonical Forms and Algorithms for Steiner Trees in Uniform Orientation Metrics. Algorithmica, 2006, 44, 281-300.	1.0	16
70	Cost Optimisation for Underground Mining Networks. Optimization and Engineering, 2005, 6, 241-256.	1.3	20
71	Upper and Lower Bounds for the Lengths of Steiner Trees in 3-Space. Geometriae Dedicata, 2004, 109, 107-119.	0.1	5
72	Optimising declines in underground mines. Mining Technology: Transactions of the Institute of Materials, Minerals and Mining Section A, 2003, 112, 164-170.	0.8	24

#	Article	IF	CITATIONS
73	Constructing minimum-cost flow-dependent networks. , 2002, 4909, 239.		О
74	Forbidden subpaths for Steiner minimum networks in uniform orientation metrics. Networks, 2002, 39, 186-202.	1.6	5
75	Minimum Networks for Four Points in Space. Geometriae Dedicata, 2002, 93, 57-70.	0.1	14
76	Minimum Networks in Uniform Orientation Metrics. SIAM Journal on Computing, 2000, 30, 1579-1593.	0.8	25
77	Shortest Networks for One Line and Two Points in Space. Combinatorial Optimization, 2000, , 15-26.	0.7	0
78	A polynomial time algorithm for rectilinear Steiner trees with terminals constrained to curves. Networks, 1999, 33, 145-155.	1.6	3
79	Steiner Trees for Terminals Constrained to Curves. SIAM Journal on Discrete Mathematics, 1997, 10, 1-17.	0.4	18
80	The steiner minimal network for convex configurations. Discrete and Computational Geometry, 1993, 9, 323-333.	0.4	3
81	The Steiner ratio conjecture for cocircular points. Discrete and Computational Geometry, 1992, 7, 77-86.	0.4	5
82	Graham's problem on shortest networks for points on a circle. Algorithmica, 1992, 7, 193-218.	1.0	23
83	Degree-five Steiner points cannot reduce network costs for planar sets. Networks, 1992, 22, 531-537.	1.6	12
84	A variational approach to the Steiner network problem. Annals of Operations Research, 1991, 33, 481-499.	2.6	59
85	ON GENERAL MATRIX MEASURES. Quarterly Journal of Mathematics, 1976, 27, 95-104.	0.3	1
86	Minimum Steiner trees on a set of concyclic points and their center. International Transactions in Operational Research, 0, , .	1.8	0
87	Optimally locating a junction point for an underground mine to maximise the net present value. ANZIAM Journal, 0, 54, 315.	0.0	4
88	Simplifying obstacles for Steiner network problems in the plane. Networks, 0, , .	1.6	0
89	Time delayed discounted Steiner trees to locate two or more discounted Steiner points. ANZIAM Journal, 0, 57, 253.	0.0	1
90	An exact algorithm for constructing minimum Euclidean skeletons of polygons. Journal of Global Optimization, 0, , 1.	1.1	0

#	Article	IF	CITATIONS
91	A model for open-pit pushback design with operational constraints. Optimization and Engineering, 0, , 1.	1.3	2