Diego Muñoz-Torrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6291145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery and In Vivo Proof of Concept of a Highly Potent Dual Inhibitor of Soluble Epoxide Hydrolase and Acetylcholinesterase for the Treatment of Alzheimer's Disease. Journal of Medicinal Chemistry, 2022, 65, 4909-4925.	2.9	22
2	Unveiling the Multitarget Anti-Alzheimer Drug Discovery Landscape: A Bibliometric Analysis. Pharmaceuticals, 2022, 15, 545.	1.7	21
3	The Cream of the Crop of the Medicinal Chemistry Section of Molecules—2019. Molecules, 2021, 26, 1053.	1.7	0
4	Clock/Sleep-Dependent Learning and Memory in Male 3xTg-AD Mice at Advanced Disease Stages and Extrinsic Effects of Huprine X and the Novel Multitarget Agent AVCRI104P3. Brain Sciences, 2021, 11, 426.	1.1	2
5	Protective Role of a Donepezil-Huprine Hybrid against the β-Amyloid (1-42) Effect on Human Erythrocytes. International Journal of Molecular Sciences, 2021, 22, 9563.	1.8	8
6	From virtual screening hits targeting a cryptic pocket in BACE-1 to a nontoxic brain permeable multitarget anti-Alzheimer lead with disease-modifying and cognition-enhancing effects. European Journal of Medicinal Chemistry, 2021, 225, 113779.	2.6	7
7	Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity that Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice. Journal of Medicinal Chemistry, 2021, 64, 812-839.	2.9	45
8	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–6. Molecules, 2020, 25, 119.	1.7	8
9	Centrally Active Multitarget Anti-Alzheimer Agents Derived from the Antioxidant Lead CR-6. Journal of Medicinal Chemistry, 2020, 63, 9360-9390.	2.9	25
10	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–7. Molecules, 2020, 25, 2968.	1.7	5
11	We've Come a Long Way, Baby: Announcing a Special Issue to Commemorate the Publication of Molecule's 20,000th Paper. Molecules, 2020, 25, 173.	1.7	0
12	Evaluation of the effects of acetylcholinesterase inhibitors in the zebrafish touch-evoked response: quantitative vs. qualitative assessment. Environmental Sciences Europe, 2020, 32, .	2.6	7
13	A novel class of multitarget anti-Alzheimer benzohomoadamantane‒chlorotacrine hybrids modulating cholinesterases and glutamate NMDA receptors. European Journal of Medicinal Chemistry, 2019, 180, 613-626.	2.6	26
14	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–5. Molecules, 2019, 24, 2415.	1.7	5
15	Synthesis, In Vitro Profiling, and In Vivo Efficacy Studies of a New Family of Multitarget Anti-Alzheimer Compounds. Proceedings (mdpi), 2019, 22, .	0.2	0
16	Multicomponent reactions: A mighty journey partner for infectious tropical disease drug discovery. Annual Reports in Medicinal Chemistry, 2019, , 181-217.	0.5	3
17	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–4. Molecules, 2019, 24, 130.	1.7	4
18	Amyloid Pan-inhibitors: One Family of Compounds To Cope with All Conformational Diseases. ACS Chemical Neuroscience, 2019, 10, 1311-1317.	1.7	14

#	Article	IF	CITATIONS
19	Bacterial Inclusion Bodies for Anti-Amyloid Drug Discovery: Current and Future Screening Methods. Current Protein and Peptide Science, 2019, 20, 563-576.	0.7	7
20	First homology model of Plasmodium falciparum glucose-6-phosphate dehydrogenase: Discovery of selective substrate analog-based inhibitors as novel antimalarial agents. European Journal of Medicinal Chemistry, 2018, 146, 108-122.	2.6	9
21	Huprine X Attenuates The Neurotoxicity Induced by Kainic Acid, Especially Brain Inflammation. Basic and Clinical Pharmacology and Toxicology, 2018, 122, 94-103.	1.2	2
22	Neuroprotective Effects of the Multitarget Agent AVCRI104P3 in Brain of Middle-Aged Mice. International Journal of Molecular Sciences, 2018, 19, 2615.	1.8	3
23	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes-3. Molecules, 2018, 23, 1596.	1.7	1
24	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–2. Molecules, 2018, 23, 65.	1.7	2
25	Tetrasubstituted Imidazolium Salts as Potent Antiparasitic Agents against African and American Trypanosomiases. Molecules, 2018, 23, 177.	1.7	5
26	Increasing Polarity in Tacrine and Huprine Derivatives: Potent Anticholinesterase Agents for the Treatment of Myasthenia Gravis. Molecules, 2018, 23, 634.	1.7	28
27	Synthesis and Biological Evaluation of Heteroarylnonanenitriles as Potential Antitrypanosomal Agents: Serendipitous Discovery of Novel Anticholinesterase Hits. Letters in Organic Chemistry, 2018, 15, 455-461.	0.2	0
28	Combined in Vitro Cell-Based/in Silico Screening of Naturally Occurring Flavonoids and Phenolic Compounds as Potential Anti-Alzheimer Drugs. Journal of Natural Products, 2017, 80, 278-289.	1.5	68
29	Behavioural effects of novel multitarget anticholinesterasic derivatives in Alzheimer's disease. Behavioural Pharmacology, 2017, 28, 124-131.	0.8	8
30	Design, synthesis and multitarget biological profiling of second-generation anti-Alzheimer rhein–huprine hybrids. Future Medicinal Chemistry, 2017, 9, 965-981.	1.1	40
31	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes. Molecules, 2017, 22, 743.	1.7	3
32	Design of Potential Antimalarial Agents Based on a Homology Model of Plasmodium falciparum Glucose-6-Phosphate Dehydrogenase. Proceedings (mdpi), 2017, 1, 665.	0.2	0
33	Introduction to the 1st Molecules Medicinal Chemistry Symposium (MMCS), Barcelona, 8 September 2017. Proceedings (mdpi), 2017, 1, .	0.2	0
34	Reaction of 3-Amino-1,2,4-Triazole with Diethyl Phosphite and Triethyl Orthoformate: Acid-Base Properties and Antiosteoporotic Activities of the Products. Molecules, 2017, 22, 254.	1.7	6
35	Multitarget Anti-Alzheimer Hybrid Compounds. , 2017, , 167-192.		9
36	Pyrrole and Fused Pyrrole Compounds with Bioactivity against Inflammatory Mediators. Molecules, 2017, 22, 461.	1.7	37

#	Article	IF	CITATIONS
37	Unveiling a novel transient druggable pocket in BACE-1 through molecular simulations: Conformational analysis and binding mode of multisite inhibitors. PLoS ONE, 2017, 12, e0177683.	1.1	17
38	Insertion of Isocyanides into Nâ^'Si Bonds: Multicomponent Reactions with Azines Leading to Potent Antiparasitic Compounds. Angewandte Chemie - International Edition, 2016, 55, 8994-8998.	7.2	28
39	Insertion of Isocyanides into Nâ^'Si Bonds: Multicomponent Reactions with Azines Leading to Potent Antiparasitic Compounds. Angewandte Chemie, 2016, 128, 9140-9144.	1.6	7
40	Synthesis and biological evaluation of N -cyanoalkyl-, N -aminoalkyl-, and N -guanidinoalkyl-substituted 4-aminoquinoline derivatives as potent, selective, brain permeable antitrypanosomal agents. Bioorganic and Medicinal Chemistry, 2016, 24, 5162-5171.	1.4	9
41	Ultra rapid in vivo screening for anti-Alzheimer anti-amyloid drugs. Scientific Reports, 2016, 6, 23349.	1.6	37
42	Design, synthesis and biological evaluation of N-methyl-N-[(1,2,3-triazol-4-yl)alkyl]propargylamines as novel monoamine oxidase B inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 4835-4854.	1.4	23
43	A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems. European Journal of Medicinal Chemistry, 2016, 121, 785-792.	2.6	9
44	Rhein-Huprine Derivatives Reduce Cognitive Impairment, Synaptic Failure and Amyloid Pathology in A?PPswe/PS-1 Mice of Different Ages. Current Alzheimer Research, 2016, 13, 1017-1029.	0.7	14
45	AVCRI104P3, a novel multitarget compound with cognition-enhancing and anxiolytic activities: Studies in cognitively poor middle-aged mice. Behavioural Brain Research, 2015, 286, 97-103.	1.2	9
46	Synthesis, biological profiling and mechanistic studies of 4-aminoquinoline-based heterodimeric compounds with dual trypanocidal–antiplasmodial activity. Bioorganic and Medicinal Chemistry, 2015, 23, 5156-5167.	1.4	14
47	Novel Levetiracetam Derivatives That Are Effective against the Alzheimer-like Phenotype in Mice: Synthesis, in Vitro, ex Vivo, and in Vivo Efficacy Studies. Journal of Medicinal Chemistry, 2015, 58, 6018-6032.	2.9	58
48	Multigram Synthesis and in Vivo Efficacy Studies of a Novel Multitarget Anti-Alzheimer's Compound. Molecules, 2015, 20, 4492-4515.	1.7	17
49	Interaction of prion protein with acetylcholinesterase: potential pathobiological implications in prion diseases. Acta Neuropathologica Communications, 2015, 3, 18.	2.4	12
50	Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity. European Journal of Medicinal Chemistry, 2015, 105, 120-137.	2.6	52
51	1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: Synthesis, pharmacological evaluation and mechanistic studies. European Journal of Medicinal Chemistry, 2014, 73, 141-152.	2.6	39
52	Synthesis and antiprotozoal activity of oligomethylene- and p-phenylene-bis(methylene)-linked bis(+)-huprines. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5435-5438.	1.0	9
53	Shogaol–huprine hybrids: Dual antioxidant and anticholinesterase agents with β-amyloid and tau anti-aggregating properties. Bioorganic and Medicinal Chemistry, 2014, 22, 5298-5307.	1.4	37
54	Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting l²-amyloid, tau, and cholinesterase pathologies. European Journal of Medicinal Chemistry, 2014, 84, 107-117.	2.6	57

#	Article	IF	CITATIONS
55	Synthesis and Multitarget Biological Profiling of a Novel Family of Rhein Derivatives As Disease-Modifying Anti-Alzheimer Agents. Journal of Medicinal Chemistry, 2014, 57, 2549-2567.	2.9	132
56	Thioflavin-S Staining of Bacterial Inclusion Bodies for the Fast, Simple, and Inexpensive Screening of Amyloid Aggregation Inhibitors. Current Medicinal Chemistry, 2014, 21, 1152-1159.	1.2	44
57	Huprine X and Huperzine A Improve Cognition and Regulate Some Neurochemical Processes Related with Alzheimer's Disease in Triple Transgenic Mice (3xTg-AD). Neurodegenerative Diseases, 2013, 11, 129-140.	0.8	38
58	Editorial (Hot Topic: Complexity against Complexity: Multitarget Drugs). Current Medicinal Chemistry, 2013, 20, 1621-1622.	1.2	7
59	Undifferentiated and Differentiated PC12 Cells Protected by Huprines Against Injury Induced by Hydrogen Peroxide. PLoS ONE, 2013, 8, e74344.	1.1	17
60	Human Disease and Drug Pharmacology, Complex as Real Life. Current Medicinal Chemistry, 2013, 20, 1623-1634.	1.2	33
61	Dual Inhibitors of β-Amyloid Aggregation and Acetylcholinesterase as Multi-Target Anti-Alzheimer Drug Candidates. Current Topics in Medicinal Chemistry, 2013, 13, 1820-1842.	1.0	69
62	Expanding the Multipotent Profile of Huprine-Tacrine Heterodimers as Disease-Modifying Anti-Alzheimer Agents. Neurodegenerative Diseases, 2012, 10, 96-99.	0.8	7
63	Huprine–Tacrine Heterodimers as Anti-Amyloidogenic Compounds of Potential Interest against Alzheimer's and Prion Diseases. Journal of Medicinal Chemistry, 2012, 55, 661-669.	2.9	90
64	Diastereoselective preparation of (S)-(1,4,4-trimethylpyrrolidin-3-yl)amine, a new chiral 1,2-diamine for thiourea-type organocatalysts. Tetrahedron: Asymmetry, 2011, 22, 745-751.	1.8	6
65	Huprines as a new family of dual acting trypanocidal–antiplasmodial agents. Bioorganic and Medicinal Chemistry, 2011, 19, 1702-1707.	1.4	9
66	Behavioural effects and regulation of PKCα and MAPK by huprine X in middle aged mice. Pharmacology Biochemistry and Behavior, 2010, 95, 485-493.	1.3	20
67	Tacrine-based dual binding site acetylcholinesterase inhibitors as potential disease-modifying anti-Alzheimer drug candidates. Chemico-Biological Interactions, 2010, 187, 411-415.	1.7	71
68	Novel Huprine Derivatives with Inhibitory Activity toward βâ€Amyloid Aggregation and Formation as Diseaseâ€Modifying Antiâ€Alzheimer Drug Candidates. ChemMedChem, 2010, 5, 1855-1870.	1.6	56
69	Straightforward preparation of enantiopure 3-amino-4,4-dimethylpyrrolidin-2-one and its derivatives. Tetrahedron: Asymmetry, 2010, 21, 2124-2135.	1.8	4
70	Structural Determinants of the Multifunctional Profile of Dual Binding Site Acetylcholinesterase Inhibitors as Anti-Alzheimer Agents. Current Pharmaceutical Design, 2010, 16, 2818-2836.	0.9	51
71	Effect of Huprine X on β-Amyloid, Synaptophysin and α7 Neuronal Nicotinic Acetylcholine Receptors in the Brain of 3xTg-AD and APPswe Transgenic Mice. Neurodegenerative Diseases, 2010, 7, 379-388.	0.8	31
72	Evaluation of Cryptolepine and Huperzine Derivatives as Lead Compounds towards New Agents for the Treatment of Human African Trypanosomiasis. Natural Product Communications, 2009, 4, 1934578X0900400.	0.2	8

#	Article	IF	CITATIONS
73	Pyrano[3,2- <i>c</i>]quinolineâ^6-Chlorotacrine Hybrids as a Novel Family of Acetylcholinesterase- and β-Amyloid-Directed Anti-Alzheimer Compounds. Journal of Medicinal Chemistry, 2009, 52, 5365-5379.	2.9	164
74	Editorial:Hot Topic: [Exploiting Multivalency in Drug Design(Executive Editor: Diego Munoz-Torrero)]. Current Pharmaceutical Design, 2009, 15, 585-586.	0.9	4
75	Novel Donepezil-Based Inhibitors of Acetyl- and Butyrylcholinesterase and Acetylcholinesterase-Induced β-Amyloid Aggregation. Journal of Medicinal Chemistry, 2008, 51, 3588-3598.	2.9	186
76	Huprines for Alzheimer's disease drug development. Expert Opinion on Drug Discovery, 2008, 3, 65-81.	2.5	19
77	Synthesis and Absolute Configuration of Novel <i>N</i> , <i>O</i> -Psiconucleosides Using (<i>R</i>)- <i>N</i> -Phenylpantolactam as a Resolution Agent. Journal of Organic Chemistry, 2008, 73, 6657-6665.	1.7	17
78	Acetylcholinesterase Inhibitors as Disease-Modifying Therapies for Alzheimers Disease. Current Medicinal Chemistry, 2008, 15, 2433-2455.	1.2	238
79	Enantiodivergent synthesis of 3-amino-4,4-dimethyl-1-phenylpyrrolidin-2-one and derivatives: amino analogues of pantolactone. Tetrahedron: Asymmetry, 2007, 18, 2947-2958.	1.8	7
80	Highly Diastereoselective One-Pot Synthesis of Spiro{cyclopenta[a]indene-2,2â€~-indene}diones from 1-Indanones and Aromatic Aldehydes. Journal of Organic Chemistry, 2006, 71, 3464-3471.	1.7	19
81	Binding of 13-Amidohuprines to Acetylcholinesterase:Â Exploring the Ligand-Induced Conformational Change of the Gly117-Gly118 Peptide Bond in the Oxyanion Hole. Journal of Medicinal Chemistry, 2006, 49, 6833-6840.	2.9	19
82	Acetylcholinesterase triggers the aggregation of PrP 106–126. Biochemical and Biophysical Research Communications, 2006, 346, 89-94.	1.0	24
83	Effect of Acetylcholinesterase Inhibitors on AChE-Induced PrP106-126 Aggregation. Journal of Molecular Neuroscience, 2006, 30, 89-90.	1.1	6
84	Dimeric and Hybrid Anti-Alzheimer Drug Candidates. Current Medicinal Chemistry, 2006, 13, 399-422.	1.2	104
85	Editorial [Hot Topic: Alzheimer Drug Design Based on the Amyloid Hypothesis (Executive Editors: D.) Tj ETQq1 1	0.784314 0.9	rgBT /Overlo
86	A synthesis of levetiracetam based on (S)-N-phenylpantolactam as a chiral auxiliary. Tetrahedron: Asymmetry, 2005, 16, 3739-3745.	1.8	40
87	Nicotinic-receptor potentiator drugs, huprine X and galantamine, increase ACh release by blocking AChE activity but not acting on nicotinic receptors. Brain Research, 2005, 1061, 73-79.	1.1	6
88	Synthesis and Applications of (R)- and (S)-Pantolactone as Chiral Auxiliaries. ChemInform, 2005, 36, no.	0.1	0
89	(±)-huprine Y, (-)-huperzine A and tacrine do not show neuroprotective properties in an apoptotic model of neuronal cytoskeletal alteration. Journal of Alzheimer's Disease, 2005, 6, 577-583.	1.2	10
90	Synthesis and Pharmacological Evaluation of Huprineâ^'Tacrine Heterodimers:Â Subnanomolar Dual Binding Site Acetylcholinesterase Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 1701-1704.	2.9	68

Diego Muñoz-Torrero

#	Article	IF	CITATIONS
91	Effects of (±)-huprine Y and (±)-huprine Z, two new anticholinesterasic drugs, on muscarinic receptors. Neuroscience Letters, 2005, 379, 106-109.	1.0	8
92	Stereoselective synthesis of both enantiomers of N-Boc-α-aryl-γ-aminobutyric acids. Tetrahedron: Asymmetry, 2004, 15, 311-321.	1.8	17
93	Synthesis of both enantiomers of baclofen using (R)- and (S)-N-phenylpantolactam as chiral auxiliaries. Tetrahedron: Asymmetry, 2004, 15, 2039-2044.	1.8	43
94	Synthesis of 13-acylamino-huprines: different behavior of diastereomeric 13-methanesulfonamido-huprines on PPA-mediated hydrolysis. Tetrahedron, 2004, 60, 5423-5431.	1.0	5
95	Synthesis of 13-acylamino-huprines: different behavior of diastereomeric 13-methanesulfonamido-huprines on PPA-mediated hydrolysis. Tetrahedron, 2004, 60, 5423-5423.	1.0	1
96	Synthesis and Applications of (R)- and (S)-Pantolactone as Chiral Auxiliaries. Current Organic Chemistry, 2004, 8, 1339-1380.	0.9	27
97	One-Pot Synthesis of N-Substituted Pantolactams from Pantolactone ChemInform, 2003, 34, no.	0.1	Ο
98	One-pot synthesis of N-substituted pantolactams from pantolactone. Tetrahedron, 2003, 59, 1971-1979.	1.0	15
99	Synthesis of diastereomeric 13-amido-substituted huprines as potential high affinity acetylcholinesterase inhibitors. Tetrahedron, 2003, 59, 4143-4151.	1.0	16
100	Neuroprotective effects of (±)-huprine Y on in vitro and in vivo models of excitoxicity damage. Experimental Neurology, 2003, 180, 123-130.	2.0	23
101	Characterisation of the anticholinesterase activity of two new tacrine–huperzine A hybrids. Neuropharmacology, 2003, 44, 749-755.	2.0	38
102	Cholinergic Drugs in Pharmacotherapy of Alzheimers Disease. Mini-Reviews in Medicinal Chemistry, 2002, 2, 11-25.	1.1	46
103	3D Structure of Torpedo californica Acetylcholinesterase Complexed with Huprine X at 2.1 Ã Resolution:  Kinetic and Molecular Dynamic Correlates,. Biochemistry, 2002, 41, 2970-2981.	1.2	126
104	EASY ACCESS TO 4-SUBSTITUTED (\hat{A} ±)-HUPERZINE A ANALOGUES. Synthetic Communications, 2001, 31, 3507-3516.	1.1	7
105	Synthesis, in Vitro Pharmacology, and Molecular Modeling ofsyn-Huprines as Acetylcholinesterase Inhibitors. Journal of Medicinal Chemistry, 2001, 44, 4733-4736.	2.9	45
106	On the regioselectivity of the Friedläder reaction leading to huprines: stereospecific acid-promoted isomerization of syn-huprines to their anti-regioisomers. Tetrahedron: Asymmetry, 2001, 12, 2909-2914.	1.8	12
107	The pharmacology of novel acetylcholinesterase inhibitors, (±)-huprines Y and X, on the Torpedo electric organ. European Journal of Pharmacology, 2001, 421, 77-84.	1.7	10
108	New Syntheses of rac-Huperzine A and its rac-7-Ethyl-Derivative. Evaluation of Several Huperzine A Analogues as Acetylcholinesterase Inhibitors. Tetrahedron, 2000, 56, 4541-4553.	1.0	19

#	Article	IF	CITATIONS
109	Synthesis of Polysubstituted Bicyclo[3.3.1]nonane-3,7-diones from Cyclohexa-2,5-dienones and Dimethyl 1,3-Acetonedicarboxylate. Tetrahedron, 2000, 56, 8141-8151.	1.0	26
110	New Tacrineâ^'Huperzine A Hybrids (Huprines):  Highly Potent Tight-Binding Acetylcholinesterase Inhibitors of Interest for the Treatment of Alzheimer's Disease. Journal of Medicinal Chemistry, 2000, 43, 4657-4666.	2.9	185
111	Synthesis of an 11-unsubstituted analogue of (±)-huperzine A. Tetrahedron, 1999, 55, 8481-8496.	1.0	12
112	Synthesis, in Vitro Pharmacology, and Molecular Modeling of Very Potent Tacrineâ^'Huperzine A Hybrids as Acetylcholinesterase Inhibitors of Potential Interest for the Treatment of Alzheimer's Disease. Journal of Medicinal Chemistry, 1999, 42, 3227-3242.	2.9	101
113	Synthesis of a Key Building Block for a Butyrolactone → 1,3-Diol Approach to the Polyol Part of Roflamycoin. European Journal of Organic Chemistry, 1998, 1998, 1031-1043.	1.2	8
114	Enantioselective synthesis of tacrine–huperzine A hybrids. Preparative chiral MPLC separation of their racemic mixtures and absolute configuration assignments by X-ray diffraction analysis. Tetrahedron: Asymmetry, 1998, 9, 835-849.	1.8	40
115	Synthesis and evaluation of tacrine–Huperzine a hybrids as acetylcholinesterase inhibitors of potential interest for the treatment of alzheimer's disease. Bioorganic and Medicinal Chemistry, 1998, 6, 427-440.	1.4	80
116	On the Synthesis of 2-Amino-4,6-difluorobenzonitrile: Highly Selective Formation of 5-Fluoro-3-nitro-1,2-benzoquinone 2-Diazide in the Attempted Sandmeyer Cyanation of 2,4-Difluoro-6-nitrobenzenediazonium Cationâ€. Journal of Chemical Research Synopses, 1998, , 144-145.	0.3	3
117	Easy synthesis of 7-alkylbicyclo[3.3.1]non-6-en-3-ones by silica gel-promoted fragmentation of 3-alkyl-2-oxaadamant-1-yl mesylates. Tetrahedron, 1996, 52, 5867-5880.	1.0	22
118	Synthesis of bridgehead polycyclic 1,2â€diamines and 2â€amino alcohol derivatives as Rigid acetylcholine analogs. Liebigs Annalen, 1995, 1995, 523-535.	0.8	5
119	Stereoselective deuteration of a bridgehead polycyclic 2-nitro alcohol through a retro-Henry reaction. Tetrahedron, 1995, 51, 6587-6590.	1.0	5
120	Unusual oxidation of bridgehead polycyclic 1,2-diamines and 2-aminoalcohols with dimethyldioxirane: Formation of dioximes and monooximes by cleavage of the central carbon-carbon bond. Tetrahedron Letters, 1995, 36, 1917-1920.	0.7	12
121	Alternative syntheses of bridgehead polycyclic 1,2-diamines and 2-aminoalcohols from di- and mono-oximes of some bicyclic diketones: Highly improved synthesis of tricyclo[3.3.1.03,7]nonane-3,7-diamine. Tetrahedron Letters, 1994, 35, 3187-3190.	0.7	14
122	Synthesis and evaluation of tacrine-related compounds for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 1994, 29, 205-221.	2.6	28