Sifeng Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6291139/publications.pdf Version: 2024-02-01

SIFENC MAO

#	Article	IF	CITATIONS
1	Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection. Lab on A Chip, 2012, 12, 219-226.	3.1	91
2	Strategy for Signaling Molecule Detection by Using an Integrated Microfluidic Device Coupled with Mass Spectrometry to Study Cell-to-Cell Communication. Analytical Chemistry, 2013, 85, 868-876.	3.2	87
3	Inâ€Situ Scatheless Cell Detachment Reveals Correlation between Adhesion Strength and Viability at Singleâ€Cell Resolution. Angewandte Chemie - International Edition, 2018, 57, 236-240.	7.2	78
4	Dean flow assisted cell ordering system for lipid profiling in single-cells using mass spectrometry. Chemical Communications, 2018, 54, 2595-2598.	2.2	71
5	Single-cell assay on microfluidic devices. Analyst, The, 2019, 144, 808-823.	1.7	60
6	Rare cell chemiluminescence detection based on aptamer-specific capture in microfluidic channels. Biosensors and Bioelectronics, 2011, 28, 438-442.	5.3	55
7	Inkjet Nanoinjection for High-Thoughput Chemiluminescence Immunoassay on Multicapillary Glass Plate. Analytical Chemistry, 2013, 85, 7413-7418.	3.2	54
8	Emerging open microfluidics for cell manipulation. Chemical Society Reviews, 2021, 50, 5333-5348.	18.7	54
9	Cell Signaling Analysis by Mass Spectrometry under Coculture Conditions on an Integrated Microfluidic Device. Analytical Chemistry, 2011, 83, 9306-9313.	3.2	51
10	Multi-channel microfluidic chip-mass spectrometry platform for cell analysis. Chinese Chemical Letters, 2017, 28, 1625-1630.	4.8	49
11	Multi-DNAzymes-functionalized gold nanoparticles for ultrasensitive chemiluminescence detection of thrombin on microchip. Analytica Chimica Acta, 2018, 1027, 76-82.	2.6	48
12	A dual-functional microfluidic chip for on-line detection of interleukin-8 based on rolling circle amplification. Biosensors and Bioelectronics, 2018, 102, 652-660.	5.3	48
13	Single-cell identification by microfluidic-based <i>in situ</i> extracting and online mass spectrometric analysis of phospholipids expression. Chemical Science, 2020, 11, 253-256.	3.7	46
14	Combination Stiffness Gradient with Chemical Stimulation Directs Glioma Cell Migration on a Microfluidic Chip. Analytical Chemistry, 2020, 92, 892-898.	3.2	46
15	Controllable Synthesis of Multicompartmental Particles Using 3D Microfluidics. Angewandte Chemie - International Edition, 2020, 59, 2225-2229.	7.2	45
16	Adhesion analysis of single circulating tumor cells on a base layer of endothelial cells using open microfluidics. Chemical Science, 2018, 9, 7694-7699.	3.7	44
17	Cell analysis on chip-mass spectrometry. TrAC - Trends in Analytical Chemistry, 2018, 107, 43-59.	5.8	40
18	Online Analysis of Drug Toxicity to Cells with Shear Stress on an Integrated Microfluidic Chip. ACS Sensors, 2019, 4, 521-527.	4.0	39

SIFENG MAO

#	Article	IF	CITATIONS
19	Quantitative determination of VECF165 in cell culture medium by aptamer sandwich based chemiluminescence assay. Talanta, 2017, 171, 197-203.	2.9	38
20	Shear Stress-Enhanced Internalization of Cell Membrane Proteins Indicated by a Hairpin-Type DNA Probe. Analytical Chemistry, 2018, 90, 5540-5545.	3.2	35
21	Development and applications of paper-based electrospray ionization-mass spectrometry for monitoring of sequentially generated droplets. Analyst, The, 2013, 138, 2163.	1.7	33
22	Reconstituting Glioma Perivascular Niches on a Chip for Insights into Chemoresistance of Glioma. Analytical Chemistry, 2018, 90, 10326-10333.	3.2	31
23	Multifunctional Regulation of 3D Cell-Laden Microsphere Culture on an Integrated Microfluidic Device. Analytical Chemistry, 2019, 91, 12283-12289.	3.2	31
24	Chemical operations on a living single cell by open microfluidics for wound repair studies and organelle transport analysis. Chemical Science, 2019, 10, 2081-2087.	3.7	31
25	Evaluation of drug combination for glioblastoma based on an intestine–liver metabolic model on microchip. Analyst, The, 2017, 142, 3629-3638.	1.7	30
26	Microfluidic Devices in the Fastâ€Growing Domain of Singleâ€Cell Analysis. Chemistry - A European Journal, 2018, 24, 15398-15420.	1.7	30
27	Realâ€īme Imaging of Ammonia Release from Single Live Cells via Liquid Crystal Droplets Immobilized on the Cell Membrane. Advanced Science, 2019, 6, 1900778.	5.6	30
28	Measurement of Cell–Matrix Adhesion at Single-Cell Resolution for Revealing the Functions of Biomaterials for Adherent Cell Culture. Analytical Chemistry, 2018, 90, 9637-9643.	3.2	27
29	Alteration of intracellular metabolome in osteosarcoma stem cells revealed by liquid chromatography-tandem mass spectrometry. Talanta, 2019, 204, 6-12.	2.9	23
30	In Situ Partial Treatment of Single Cells by Laminar Flow in the "Open Space― Analytical Chemistry, 2019, 91, 1644-1650.	3.2	23
31	An open-space microfluidic chip with fluid walls for online detection of VEGF via rolling circle amplification. Chemical Science, 2019, 10, 8571-8576.	3.7	22
32	Advances in tumor-endothelial cells co-culture and interaction on microfluidics. Journal of Pharmaceutical Analysis, 2018, 8, 210-218.	2.4	21
33	Online monodisperse droplets based liquid–liquid extraction on a continuously flowing system by using microfluidic devices. RSC Advances, 2014, 4, 11919.	1.7	19
34	A reversibly electro-controllable polymer brush for electro-switchable friction. Journal of Materials Chemistry C, 2017, 5, 5877-5881.	2.7	19
35	DNA-Mediated rolling circle amplification for ultrasensitive detection of thrombin using MALDI-TOF mass spectrometry. Chemical Communications, 2018, 54, 11546-11549.	2.2	19
36	A Fluidic Isolation-Assisted Homogeneous-Flow-Pressure Chip-Solid Phase Extraction-Mass Spectrometry System for Online Dynamic Monitoring of 25-Hydroxyvitamin D ₃ Biotransformation in Cells. Analytical Chemistry, 2021, 93, 2273-2280.	3.2	19

SIFENG MAO

#	Article	IF	CITATIONS
37	Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass. Talanta, 2019, 191, 67-73.	2.9	18
38	Microfluidic adhesion analysis of single glioma cells for evaluating the effect of drugs. Science China Chemistry, 2020, 63, 865-870.	4.2	18
39	The pathological structure of the perivascular niche in different microvascular patterns of glioblastoma. PLoS ONE, 2017, 12, e0182183.	1.1	18
40	Inkjet printing based assembly of thermoresponsive core–shell polymer microcapsules for controlled drug release. Journal of Materials Chemistry B, 2016, 4, 4156-4163.	2.9	17
41	Generation of controlled monodisperse porous polymer particles by dipped inkjet injection. RSC Advances, 2015, 5, 7297-7303.	1.7	16
42	Controlled grafted poly(quaternized-4-vinylpyridine- <i>co</i> -acrylic acid) brushes attract bacteria for effective antimicrobial surfaces. Journal of Materials Chemistry B, 2018, 6, 3782-3791.	2.9	15
43	Responses of Cellular Adhesion Strength and Stiffness to Fluid Shear Stress during Tumor Cell Rolling Motion. ACS Sensors, 2019, 4, 1710-1715.	4.0	15
44	Comparative proteomics of cancer stem cells in osteosarcoma using ultra-high-performance liquid chromatography and Orbitrap Fusion mass spectrometer. Talanta, 2018, 178, 362-368.	2.9	14
45	Homogenous deposition of matrix–analyte cocrystals on gold-nanobowl arrays for improving MALDI-MS signal reproducibility. Chemical Communications, 2019, 55, 2166-2169.	2.2	14
46	A microfluidic photolithography for controlled encapsulation of single cells inside hydrogel microstructures. Science China Chemistry, 2012, 55, 494-501.	4.2	13
47	The use of an inkjet injection technique in immunoassays by quantitative on-line electrophoretically mediated microanalysis. Journal of Chromatography A, 2016, 1477, 127-131.	1.8	13
48	Chip-based SALDI-MS for rapid determination of intracellular ratios of glutathione to glutathione disulfide. Science China Chemistry, 2019, 62, 142-150.	4.2	12
49	Writing of nanowires <i>via</i> high viscosity-induced nano diffusive layer. Journal of Materials Chemistry C, 2017, 5, 11666-11671.	2.7	11
50	A chemo-mechanical switch for controllable water transportation based on a thermally responsive block copolymer. Chemical Communications, 2014, 50, 10265-10268.	2.2	10
51	Microchemical Pen: An Open Microreactor for Regionâ€5elective Surface Modification. ChemPhysChem, 2016, 17, 3155-3159.	1.0	10
52	Controllable Synthesis of Multicompartmental Particles Using 3D Microfluidics. Angewandte Chemie, 2020, 132, 2245-2249.	1.6	10
53	<i>In Situ</i> Single-Cell Stimulation and Real-Time Electrochemical Detection of Lactate Response Using a Microfluidic Probe. Analytical Chemistry, 2021, 93, 8680-8686.	3.2	10
54	Combination of nano-material enrichment and dead-end filtration for uniform and rapid sample preparation in matrix-assisted laser desorption/ionization mass spectrometry. Talanta, 2018, 181, 217-223.	2.9	9

SIFENG MAO

#	Article	IF	CITATIONS
55	Selective Fabrication of Nanowires with High Aspect Ratios Using a Diffusion Mixing Reaction System for Applications in Temperature Sensing. Analytical Chemistry, 2019, 91, 7346-7352.	3.2	9
56	Convectionâ€Diffusion Layer in an "Open Space―for Local Surface Treatment and Microfabrication using a Fourâ€Aperture Microchemical Pen. ChemPhysChem, 2017, 18, 2357-2363.	1.0	6
57	Inâ€Situ Scatheless Cell Detachment Reveals Correlation between Adhesion Strength and Viability at Singleâ€Cell Resolution. Angewandte Chemie, 2018, 130, 242-246.	1.6	6
58	Inhibition of anaerobic probiotics on colorectal cancer cells using intestinal microfluidic systems. Science China Chemistry, 2018, 61, 1034-1042.	4.2	6
59	Cell Heterogeneity Revealed by On-Chip Angiogenic Endothelial Cell Migration. ACS Omega, 2020, 5, 3857-3862.	1.6	6
60	A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer. Chinese Chemical Letters, 2022, 33, 3083-3086.	4.8	6
61	Elaborately programmed nanowires fabricated using a tapered push–pull nozzle system. Chemical Communications, 2018, 54, 719-722.	2.2	6
62	In Situ Monitoring of Fluid Shear Stress Enhanced Adherence of Bacteria to Cancer Cells on Microfluidic Chip. Analytical Chemistry, 2019, 91, 5973-5979.	3.2	3
63	Reversibly Switching Molecular Spectra. ACS Applied Materials & amp; Interfaces, 2018, 10, 23247-23253.	4.0	2
64	Local surface modification at precise position using a chemical pen. Talanta, 2018, 187, 246-251.	2.9	1
65	Proteomic Distributions in CD34+ Microvascular Niche Patterns of Glioblastoma. Journal of Histochemistry and Cytochemistry, 2022, 70, 99-110.	1.3	1
66	Regioselective fabrication of gold nanowires using open-space laminar flow for attomolar protein detection. Chemical Communications, 2022, 58, 4308-4311.	2.2	1
67	Frontispiece: Microfluidic Devices in the Fastâ€Growing Domain of Singleâ€Cell Analysis. Chemistry - A European Journal, 2018, 24,	1.7	0
68	Microfluidic Chip-Based Live Single-Cell Probes. Integrated Analytical Systems, 2019, , 217-255.	0.4	0