
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6290618/publications.pdf Version: 2024-02-01

DONG WANG

#	Article	IF	CITATIONS
1	Nanofiber-based transparent film with controllable optical transparency adjustment function for versatile bionic applications. Nano Research, 2022, 15, 564-572.	5.8	10
2	Fiber based organic electrochemical transistor integrated with molecularly imprinted membrane for uric acid detection. Talanta, 2022, 238, 123055.	2.9	17
3	Wearable human-machine interaction device integrated by all-textile-based tactile sensors array via facile cross-stitch. Sensors and Actuators A: Physical, 2022, 333, 113240.	2.0	11
4	A transparent PEDOT:PSS/PVA-co-PE/epoxy thermoelectric composite device with excellent flexibility and environmental stability. Composites Science and Technology, 2022, 218, 109153.	3.8	17
5	A Hierarchical Structure of Flower-Like Zinc Oxide and Poly(Vinyl Alcohol- <i>co</i> -Ethylene) Nanofiber Hybrid Membranes for High-Performance Air Filters. ACS Omega, 2022, 7, 3030-3036.	1.6	9
6	Caterpillar-like Ag–ZnO–C hollow nanocomposites for efficient solar photocatalytic degradation and disinfection. Environmental Science: Nano, 2022, 9, 975-987.	2.2	2
7	Gelatinase-responsive photonic crystal membrane for pathogenic bacteria detection and application in vitro health diagnosis. Biosensors and Bioelectronics, 2022, 202, 114013.	5.3	10
8	In-situ growth of multienzyme-inorganic hybrid nanoflowers on PVA-co-PE nanofibrous strip for colorimetric biosensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128419.	2.3	8
9	Solution Viscosityâ€Mediated Structural Control of Nanofibrous Sponge for RNA Separation and Purification. Advanced Functional Materials, 2022, 32, .	7.8	9
10	Polyamide thin film nanocomposite membrane with internal void structure mediated by silica and SDS for highly permeable reverse-osmosis application. Composites Communications, 2022, , 101092.	3.3	3
11	Wide-range sensitive all-textile piezoresistive sensors assembled with biomimetic core-shell yarn via facile embroidery integration. Chemical Engineering Journal, 2022, 435, 135003.	6.6	14
12	Design and synthesis of mechanochromic poly(ether-ester-urethane) elastomer with high toughness and resilience mediated by crystalline domains. Polymer Chemistry, 2022, 13, 2155-2164.	1.9	5
13	Woven fiber organic electrochemical transistors based on multiwalled carbon nanotube functionalized PEDOT nanowires for nondestructive detection of potassium ions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 278, 115657.	1.7	15
14	Multi-heteroatom-doped hollow carbon nanocages from ZIF-8@CTP nanocomposites as high-performance anodes for sodium-ion batteries. Composites Communications, 2022, 32, 101116.	3.3	51
15	A Reversible Moisture-Responsive Plasmonic Color-Raman and Transmittance Modulation Device by Dispersing Hyaluronan-Functionalized Ag into Nanofibers. ACS Applied Materials & Interfaces, 2022, 14, 2219-2229.	4.0	3
16	Highâ€Performance PA Nanofiltration Membrane with Coralâ€Reefâ€Like Morphology atop Polydopamine Decorated EVOH Nanofiber Scaffold. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	2
17	Microwave synthesis of graphene oxide decorated with silver nanoparticles for slow-release antibacterial hydrogel. Materials Today Communications, 2022, 31, 103663.	0.9	7
18	Facile fabrication of nanofibrous ion-exchange chromatography membrane with aminated surface for highly efficient RNA separation and purification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129160.	2.3	2

DONG WANG

#	Article	IF	CITATIONS
19	High‥ield of Nucleic Acid Adsorption via Poly(Vinyl Alcoholâ€ <i>co</i> â€Ethylene) Nanofiberâ€Based Anionâ€Exchange Chitosan Aerogel Membrane with Controllable Porosity. Advanced Materials Interfaces, 2022, 9, .	1.9	3
20	Layer-by-layer assembly of composite conductive fiber-based organic electrochemical transistor for highly sensitive detection of sialic acid. Electrochimica Acta, 2022, 425, 140716.	2.6	9
21	An EVOH nanofibrous sterile membrane with a robust and antifouling surface for high-performance sterile filtration <i>via</i> glutaraldehyde crosslinking and a plasma-assisted process. Soft Matter, 2022, 18, 4991-5000.	1.2	1
22	Superwettable membrane with hierarchical porosity for simultaneous separation of emulsions and removal of nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125798.	2.3	5
23	Highly accurate fabric piezoresistive sensor with anti-interference from both high humidity and sweat based on hydrophobic non-fluoride titanium dioxide nanoparticles. Journal of Materials Chemistry C, 2021, 9, 5217-5226.	2.7	15
24	Handedness Inversion of Chiral 3â€Aminophenol Formaldehyde Resin Nanotubes Mediated by Metal Coordination. Angewandte Chemie - International Edition, 2021, 60, 7759-7769.	7.2	25
25	Recent advances in novel aerogels through the hybrid aggregation of inorganic nanomaterials and polymeric fibers for thermal insulation. Aggregate, 2021, 2, e30.	5.2	26
26	Handedness Inversion of Chiral 3â€Aminophenol Formaldehyde Resin Nanotubes Mediated by Metal Coordination. Angewandte Chemie, 2021, 133, 7838-7848.	1.6	3
27	In-situ preparation of MIL-88A(Fe)/MIL-100(Fe)/PVA-Co-PE nanofiber membranes for efficient photocatalytic reduction of CO2. IOP Conference Series: Earth and Environmental Science, 2021, 760, 012017.	0.2	0
28	<i>N</i> -Halamine Polypropylene Nonwoven Fabrics with Rechargeable Antibacterial and Antiviral Functions for Medical Applications. ACS Biomaterials Science and Engineering, 2021, 7, 2329-2336.	2.6	29
29	Fabrication of silica/PVA-co-PE nanofiber membrane for oil/water separation. Fashion and Textiles, 2021, 8, .	1.3	6
30	Highly Permeable Polyamide Nanofiltration Membrane Mediated by an Upscalable Wet-Laid EVOH Nanofibrous Scaffold. ACS Applied Materials & Interfaces, 2021, 13, 23142-23152.	4.0	19
31	Electrochemical synthesis of chitosan/silver nanoparticles multilayer hydrogel coating with pH-dependent controlled release capability and antibacterial property. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111711.	2.5	30
32	Flexible, breathable, and highly environmental-stable Ni/PPy/PET conductive fabrics for efficient electromagnetic interference shielding and wearable textile antennas. Composites Part B: Engineering, 2021, 215, 108752.	5.9	49
33	Fabrics Attached with Highly Efficient Aggregation-Induced Emission Photosensitizer: Toward Self-Antiviral Personal Protective Equipment. ACS Nano, 2021, 15, 13857-13870.	7.3	38
34	Interpenetrating polysaccharide-based hydrogel: A dynamically responsive versatile medium for precisely controlled synthesis of nanometals. Materials Science and Engineering C, 2021, 127, 112211.	3.8	5
35	Facile fabrication of F-doped biomass carbon as high-performance anode material for potassium-ion batteries. Electrochimica Acta, 2021, 389, 138799.	2.6	24
36	Experimental study on plasma denitration by a bamboo based composite catalyst. Chemical Engineering and Processing: Process Intensification, 2021, 166, 108466.	1.8	1

#	Article	IF	CITATIONS
37	Humidity-Driven Switch in the Transparency of a Nanofiber Film for a Smart Window. Journal of Physical Chemistry Letters, 2021, 12, 9636-9643.	2.1	7
38	Graphene Oxide/Nanofiber-Based Actuation Films with Moisture and Photothermal Stimulation Response for Remote Intelligent Control Applications. ACS Applied Materials & Interfaces, 2021, 13, 48179-48188.	4.0	11
39	Wearable thermoelectric 3D spacer fabric containing a photothermal ZrC layer with improved power generation efficiency. Energy Conversion and Management, 2021, 243, 114432.	4.4	14
40	Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion. Composites Science and Technology, 2021, 215, 109023.	3.8	50
41	Chiral carbon nanotubes decorated MoS2 nanosheets as stable anode materials for sodium-ion batteries. Journal of Alloys and Compounds, 2021, 887, 161354.	2.8	14
42	Rational programming of polysaccharide-based double network hydrogel with heterogeneous architecture and multifunction via electrical signal/temperature triggered sequential self-assembly. Composites Part B: Engineering, 2021, 226, 109343.	5.9	18
43	Preparation of a novel V2C mxene/g-C3N4 and its performance in plasma catalytic denitrification. E3S Web of Conferences, 2021, 252, 02068.	0.2	5
44	Synergistically Improving Flexibility and Thermoelectric Performance of Composite Yarn by Continuous Ultrathin PEDOT:PSS/DMSO/Ionic Liquid Coating. ACS Applied Materials & Interfaces, 2021, 13, 50430-50440.	4.0	22
45	Full-Textile Human Motion Detection Systems Integrated by Facile Weaving with Hierarchical Core–Shell Piezoresistive Yarns. ACS Applied Materials & Interfaces, 2021, 13, 52901-52911.	4.0	15
46	Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment. Journal of Hazardous Materials, 2020, 381, 120947.	6.5	34
47	One pot synthesis and capacitive sodium storage properties of rGO confined CoS2 anode materials. Journal of Alloys and Compounds, 2020, 813, 151598.	2.8	20
48	Flexible and Super-Sensitive Moisture-Responsive Actuators by Dispersing Graphene Oxide into Three-Dimensional Structures of Nanofibers and Silver Nanowires. ACS Applied Materials & Interfaces, 2020, 12, 3245-3253.	4.0	42
49	Ag nanoparticles decorated PVA-co-PE nanofiber-based membrane with antifouling surface for highly efficient inactivation and interception of bacteria. Applied Surface Science, 2020, 506, 144664.	3.1	32
50	Fabrication of ultra-light nickel/graphene composite foam with 3D interpenetrating network for high-performance electromagnetic interference shielding. Composites Part B: Engineering, 2020, 182, 107614.	5.9	60
51	Synergistic improvement for mechanical, thermal and optical properties of PVA-co-PE nanofiber/epoxy composites with cellulose nanocrystals. Composites Science and Technology, 2020, 188, 107990.	3.8	21
52	Nanofiber-reinforced bulk hydrogel: preparation and structural, mechanical, and biological properties. Journal of Materials Chemistry B, 2020, 8, 9794-9803.	2.9	40
53	Polypyrrole (PPy) attached on porous conductive sponge derived from carbonized graphene oxide coated polyurethane (PU) and its application in pressure sensor. Composites Communications, 2020, 22, 100426.	3.3	54
54	Large-Area, Wearable, Self-Powered Pressure–Temperature Sensor Based on 3D Thermoelectric Spacer Fabric. ACS Sensors, 2020, 5, 2545-2554.	4.0	106

#	Article	IF	CITATIONS
55	Highly Accurate Wearable Piezoresistive Sensors without Tension Disturbance Based on Weaved Conductive Yarn. ACS Applied Materials & Interfaces, 2020, 12, 35638-35646.	4.0	33
56	Surface Functional Nanofiber Membrane for Ultrasensitive and Naked-Eye Visualization of Bacterial Concentration. ACS Applied Bio Materials, 2020, 3, 6466-6477.	2.3	3
57	Featuring surface sodium storage properties of confined MoS2/bacterial cellulose-derived carbon nanofibers anode. Applied Surface Science, 2020, 530, 147261.	3.1	13
58	Breathable and Large Curved Area Perceptible Flexible Piezoresistive Sensors Fabricated with Conductive Nanofiber Assemblies. ACS Applied Materials & Interfaces, 2020, 12, 37764-37773.	4.0	25
59	Preparation and properties of polypyrrole/polyamide 6 nanocomposite film with core-shell architecture for the high-performance flexible supercapacitor. Composites Communications, 2020, 22, 100468.	3.3	14
60	Graft Copolymer Elastomers with Polar Polyacrylonitrile as Semicrystalline Side Chains: Excellent Toughness and Healability. Macromolecules, 2020, 53, 8928-8939.	2.2	9
61	Fiber organic electrochemical transistors based on multi-walled carbon nanotube and polypyrrole composites for noninvasive lactate sensing. Analytical and Bioanalytical Chemistry, 2020, 412, 7515-7524.	1.9	25
62	Wire templated electrodeposition of vessel-like structured chitosan hydrogel by using a pulsed electrical signal. Soft Matter, 2020, 16, 9471-9478.	1.2	17
63	Nanofibrous Aerogels with Vertically Aligned Microchannels for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 42686-42695.	4.0	30
64	0D/2D Heterojunctions of Ti ₃ C ₂ MXene QDs/SiC as an Efficient and Robust Photocatalyst for Boosting the Visible Photocatalytic NO Pollutant Removal Ability. ACS Applied Materials & Interfaces, 2020, 12, 40176-40185.	4.0	132
65	A multifunctional metal-biopolymer coordinated double network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties. Biomaterials Science, 2020, 8, 3193-3201.	2.6	59
66	Ag nanoparticles decorated PVA-co-PE nanofibrous microfiltration membrane with antifouling surface for efficient sterilization. Composites Communications, 2020, 21, 100379.	3.3	11
67	PVA-co-PE nanofibers synergistically reinforced composite film with high transparency and flexibility. Composites Communications, 2020, 20, 100371.	3.3	7
68	High-Performance Natural Melanin/Poly(vinyl Alcohol-co-ethylene) Nanofibers/PA6 Fiber for Twisted and Coiled Fiber-Based Actuator. Advanced Fiber Materials, 2020, 2, 64-73.	7.9	27
69	The construction of sea urchin spines-like polypyrrole arrays on cotton-based fabric electrode via a facile electropolymerization for high performance flexible solid-state supercapacitors. Electrochimica Acta, 2020, 354, 136746.	2.6	19
70	Highly efficient nanofibrous sterile membrane with anti-BSA/RNA-fouling surface via plasma-assisted carboxylation process. Journal of Membrane Science, 2020, 601, 117935.	4.1	14
71	lce-templating of chitosan/agarose porous composite hydrogel with adjustable water-sensitive shape memory property and multi-staged degradation performance. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110907.	2.5	33
72	Wet‣pinning Fabrication of Flexible Conductive Composite Fibers from Silver Nanowires and Fibroin. Bulletin of the Korean Chemical Society, 2020, 41, 162-169.	1.0	8

#	Article	IF	CITATIONS
73	Electrodeposition of poly (vinyl alcohol-co-ethylene) nanofiber reinforced chitosan nanocomposite film for electrochemically programmed release of protein. Polymer, 2020, 193, 122338.	1.8	5
74	A novel PU/PVA-co-PE composite nanofiber membrane for water filtration. Journal of Industrial Textiles, 2019, 49, 431-446.	1.1	5
75	MIL-100(Fe)/Ti ₃ C ₂ MXene as a Schottky Catalyst with Enhanced Photocatalytic Oxidation for Nitrogen Fixation Activities. ACS Applied Materials & Interfaces, 2019, 11, 44249-44262.	4.0	116
76	Ultra-Sensitive Piezo-Resistive Sensors Constructed with Reduced Graphene Oxide/Polyolefin Elastomer (RGO/POE) Nanofiber Aerogels. Polymers, 2019, 11, 1883.	2.0	6
77	Synergistic effect on TiO2 doped poly (vinyl alcohol-co-ethylene) nanofibrous film for filtration and photocatalytic degradation of methylene blue. Composites Communications, 2019, 12, 112-116.	3.3	29
78	Photothermal and Moisture Actuator Made with Graphene Oxide and Sodium Alginate for Remotely Controllable and Programmable Intelligent Devices. ACS Applied Materials & Interfaces, 2019, 11, 21926-21934.	4.0	41
79	A novel, stretchable, silverâ€coated polyolefin elastomer nanofiber membrane for strain sensor applications. Journal of Applied Polymer Science, 2019, 136, 47928.	1.3	8
80	Fabrication of ZrC/PVA-co-PE NF composite membranes with photo-thermal conversion for solar desalination. Composites Communications, 2019, 13, 151-155.	3.3	12
81	A highly stretchable, breathable and thermoregulatory electronic skin based on the polyolefin elastomer nanofiber membrane. Applied Surface Science, 2019, 486, 249-256.	3.1	39
82	Strategy of Constructing Light-Weight and Highly Compressible Graphene-Based Aerogels with an Ordered Unique Configuration for Wearable Piezoresistive Sensors. ACS Applied Materials & Interfaces, 2019, 11, 19350-19362.	4.0	41
83	Efficient adsorption of dyes from aqueous solution by poly(vinyl alcohol oâ€ethylene) nanofibre membranes modified with β•yclodextrin. Coloration Technology, 2019, 135, 244-249.	0.7	5
84	Wearable Fiber-Based Organic Electrochemical Transistors as a Platform for Highly Sensitive Dopamine Monitoring. ACS Applied Materials & amp; Interfaces, 2019, 11, 13105-13113.	4.0	102
85	Controllable Shape Changing and Tristability of Bilayer Composite. ACS Applied Materials & Interfaces, 2019, 11, 16881-16887.	4.0	14
86	Facile preparation and characterization of a nanofiber-coated textile with durable and rechargeable antibacterial activity. New Journal of Chemistry, 2019, 43, 17116-17122.	1.4	6
87	A Readily Accessible Functional Nanofibrous Membrane for Highâ€Capacity Immobilization of Ag Nanoparticles and Ultrafast Catalysis Application. Advanced Materials Interfaces, 2019, 6, 1801617.	1.9	15
88	The construction of rod-like polypyrrole network on hard magnetic porous textile anodes for microbial fuel cells with ultra-high output power density. Journal of Power Sources, 2019, 412, 514-519.	4.0	15
89	Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nature Materials, 2019, 18, 62-68.	13.3	316
90	Superfast, Porous, and Organic Solvent-Sensitive Actuator Based on EVOH Nanofibrous Membrane and PS Microspheres, Journal of Physical Chemistry C, 2019, 123, 185-194.	1.5	15

#	Article	IF	CITATIONS
91	Bioinspired Smart Moisture Actuators Based on Nanoscale Cellulose Materials and Porous, Hydrophilic EVOH Nanofibrous Membranes. ACS Applied Materials & Interfaces, 2019, 11, 1440-1448.	4.0	73
92	Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature. Chemical Engineering Journal, 2019, 358, 291-298.	6.6	30
93	Facile Fabrication of Conductive Graphene/Polyurethane Foam Composite and Its Application on Flexible Piezo-Resistive Sensors. Polymers, 2019, 11, 1289.	2.0	44
94	Affinity functionalization of PVA-co-PE nanofibrous membrane with Ni(ii)-chelated ligand for bovine hemoglobin adsorption. New Journal of Chemistry, 2018, 42, 3990-3994.	1.4	8
95	Flexible supercapacitor with high energy density prepared by GO-induced porous coral-like polypyrrole (PPy)/PET non-woven fabrics. Journal of Materials Science, 2018, 53, 8409-8419.	1.7	25
96	Facile fabrication of poly(glycidyl methacrylate)-b-polystyrene functional fibers under a shear field and immobilization of hemoglobin. New Journal of Chemistry, 2018, 42, 8537-8543.	1.4	1
97	A thin film composite membrane supported by a hydrophilic poly(vinyl alcoholâ€ <i>co</i> â€ethylene) nanofiber membrane: Preparation, characterization, and application in nanofiltration. Journal of Applied Polymer Science, 2018, 135, 46261.	1.3	3
98	Antibacterial and rechargeable surface functional nanofiber membrane for healthcare textile application. New Journal of Chemistry, 2018, 42, 2824-2829.	1.4	2
99	A facile route to the production of polymeric nanofibrous aerogels for environmentally sustainable applications. Journal of Materials Chemistry A, 2018, 6, 3692-3704.	5.2	73
100	In situ prepared nanosized Pt-Ag/PDA/PVA-co-PE nanofibrous membrane for highly-efficient catalytic reduction of p-nitrophenol. Composites Communications, 2018, 9, 11-16.	3.3	25
101	Nanosized nickel decorated sisal fibers with tailored aggregation structures for catalysis reduction of toxic aromatic compounds. Industrial Crops and Products, 2018, 119, 226-236.	2.5	4
102	The poly(vinyl alcohol-co-ethylene) nanofiber/silica coated composite membranes for oil/water and oil-in-water emulsion separation. Composites Communications, 2018, 7, 69-73.	3.3	41
103	Ethylenediamine-assisted synthesis of microsized cobalt sulfide as advanced anode materials for sodium ion batteries. Journal of Alloys and Compounds, 2018, 735, 765-772.	2.8	10
104	Natural alginate fiber-based actuator driven by water or moisture for energy harvesting and smart controller applications. Journal of Materials Chemistry A, 2018, 6, 22599-22608.	5.2	58
105	Ultrasensitive Wearable Pressure Sensors Assembled by Surface-Patterned Polyolefin Elastomer Nanofiber Membrane Interpenetrated with Silver Nanowires. ACS Applied Materials & Interfaces, 2018, 10, 42706-42714.	4.0	47
106	Flexible nanofibers-reinforced silk fibroin films plasticized by glycerol. Composites Part B: Engineering, 2018, 152, 305-310.	5.9	32
107	AQC functionalized CNCs/PVA-co-PE composite nanofibrous membrane with flower-like microstructures for photo-induced multi-functional protective clothing. Cellulose, 2018, 25, 4819-4830.	2.4	5
108	Multistimulus Responsive Actuator with GO and Carbon Nanotube/PDMS Bilayer Structure for Flexible and Smart Devices. ACS Applied Materials & amp; Interfaces, 2018, 10, 27215-27223.	4.0	144

#	Article	IF	CITATIONS
109	High performance HKUST-1@PVA-co-PE/PVA hybrid hydrogel with enhanced selective adsorption. Composites Communications, 2018, 10, 36-40.	3.3	29
110	PVA- <i>co</i> -PE Nanofibrous Filter Media with Tailored Three-Dimensional Structure for High Performance and Safe Aerosol Filtration via Suspension-Drying Procedure. Industrial & Engineering Chemistry Research, 2018, 57, 9269-9280.	1.8	16
111	Dynamic layer-by-layer films on nanofiber membrane: a platform for ultra-sensitive bacterial concentration detection. Chemical Communications, 2018, 54, 7920-7923.	2.2	6
112	The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chemical Society Reviews, 2017, 46, 816-854.	18.7	458
113	Mechanically Robust and Transparent <i>N</i> â€Halamine Grafted PVA oâ€PE Films with Renewable Antimicrobial Activity. Macromolecular Bioscience, 2017, 17, 1600304.	2.1	40
114	Chemiluminescence biosensor for hydrogen peroxide determination by immobilizing horseradish peroxidase onto PVA- co -PE nanofiber membrane. European Polymer Journal, 2017, 91, 307-314.	2.6	26
115	The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing. Biosensors and Bioelectronics, 2017, 95, 138-145.	5.3	81
116	Three-dimensional non-woven poly(vinyl alcohol-co-ethylene) nanofiber based polyaniline flexible electrode for high performance supercapacitor. Journal of Alloys and Compounds, 2017, 715, 137-145.	2.8	12
117	Concurrent filtration and inactivation of bacteria using poly(vinyl alcohol-co-ethylene) nanofibrous membrane facilely modified using chitosan and graphene oxide. Environmental Science: Nano, 2017, 4, 385-395.	2.2	21
118	Facile synthesis of three-dimensional (3D) interconnecting polypyrrole (PPy) nanowires/nanofibrous textile composite electrode for high performance supercapacitors. Composites Part A: Applied Science and Manufacturing, 2017, 101, 30-40.	3.8	45
119	Hierarchical Polyamide 6 (PA6) Nanofibrous Membrane with Desired Thickness as Separator for High-Performance Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1526-A1533.	1.3	10
120	Vancomycin-hybrid bimetallic Au/Ag composite nanoparticles: preparation of the nanoparticles and characterization of the antibacterial activity. New Journal of Chemistry, 2017, 41, 5276-5279.	1.4	19
121	Activable carboxylic acid functionalized crystalline nanocellulose/PVA- co -PE composite nanofibrous membrane with enhanced adsorption for heavy metal ions. Separation and Purification Technology, 2017, 186, 70-77.	3.9	46
122	Study on the mechanism of NO removal by plasma-adsorption catalytic process. Fuel, 2017, 200, 290-298.	3.4	26
123	Biocidal and Rechargeable <i>N</i> -Halamine Nanofibrous Membranes for Highly Efficient Water Disinfection. ACS Biomaterials Science and Engineering, 2017, 3, 854-862.	2.6	73
124	Synthesis and characterization of hysteresis-free zirconium oligosiloxane hybrid materials for organic thin film transistors. Synthetic Metals, 2017, 223, 226-233.	2.1	5
125	Hydrogel degradation triggered by pH for the smart release of antibiotics to combat bacterial infection. New Journal of Chemistry, 2017, 41, 432-436.	1.4	26
126	In-situ polymerization of PPy/cellulose composite sponge with high elasticity and conductivity for the application of pressure sensor. Composites Communications, 2017, 6, 68-72.	3.3	44

#	Article	IF	CITATIONS
127	Photosensitizer–AgNP composite with an ability to selectively recognize pathogen and enhanced photodynamic efficiency. New Journal of Chemistry, 2017, 41, 12371-12374.	1.4	8
128	Modified thermal resistance networks model for transverse thermal conductivity of unidirectional fiber composite. Composites Communications, 2017, 6, 52-58.	3.3	12
129	Facile and Effective Coloration of Dye-Inert Carbon Fiber Fabrics with Tunable Colors and Excellent Laundering Durability. ACS Nano, 2017, 11, 10330-10336.	7.3	53
130	Highly transparent and rollable PVA- <i>co</i> -PE nanofibers synergistically reinforced with epoxy film for flexible electronic devices. Nanoscale, 2017, 9, 19216-19226.	2.8	21
131	Continuously Producible Ultrasensitive Wearable Strain Sensor Assembled with Three-Dimensional Interpenetrating Ag Nanowires/Polyolefin Elastomer Nanofibrous Composite Yarn. ACS Applied Materials & Interfaces, 2017, 9, 42058-42066.	4.0	91
132	Amine-functionalized PVA- co -PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin. Colloids and Surfaces B: Biointerfaces, 2017, 150, 271-278.	2.5	42
133	Denitration and adsorption mechanism of heat-treated bamboo charcoal. Journal of Environmental Chemical Engineering, 2017, 5, 6194-6200.	3.3	11
134	A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale, 2016, 8, 12105-12112.	2.8	141
135	Zwitterionicâ€polymerâ€functionalized poly(vinyl alcoholâ€ <i>co</i> â€ethylene) nanofiber membrane for resistance to the adsorption of bacteria and protein. Journal of Applied Polymer Science, 2016, 133, .	1.3	7
136	Biomimetic Copper-Based Inorganic–Protein Nanoflower Assembly Constructed on the Nanoscale Fibrous Membrane with Enhanced Stability and Durability. Journal of Physical Chemistry C, 2016, 120, 17348-17356.	1.5	55
137	Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection. Analytical and Bioanalytical Chemistry, 2016, 408, 5779-5787.	1.9	38
138	Durable, robust and free-standing superhydrophobic poly(vinyl alcohol- co -ethylene) nanofiber membrane. Materials Letters, 2016, 182, 106-109.	1.3	13
139	Noncrystalline nickel phosphide decorated poly(vinyl alcohol-co-ethylene) nanofibrous membrane for catalytic hydrogenation of p-nitrophenol. Applied Catalysis B: Environmental, 2016, 196, 223-231.	10.8	48
140	Hierarchically Three-Dimensional Nanofiber Based Textile with High Conductivity and Biocompatibility As a Microbial Fuel Cell Anode. Environmental Science & Technology, 2016, 50, 7889-7895.	4.6	64
141	Polypyrrole/poly(vinyl alcohol-co-ethylene) nanofiber composites on polyethylene terephthalate substrate as flexible electric heating elements. Composites Part A: Applied Science and Manufacturing, 2016, 81, 234-242.	3.8	31
142	Reinforcement of Polyethylene Terephthalate via Addition of Carbon-Based Materials. , 2015, , 41-64.		2
143	High performance hybrid Al2O3/poly(vinyl alcohol-co-ethylene) nanofibrous membrane for lithium-ion battery separator. Electrochimica Acta, 2015, 176, 949-955.	2.6	48
144	Lattice Boltzmann Modeling of Thermal Conduction in Composites with Thermal Contact Resistance. Communications in Computational Physics, 2015, 17, 1037-1055.	0.7	22

#	Article	IF	CITATIONS
145	Large scale poly(vinyl alcohol-co-ethylene)/TiO ₂ hybrid nanofibrous filters with efficient fine particle filtration and repetitive-use performance. RSC Advances, 2015, 5, 87924-87931.	1.7	24
146	Highly hydrophilic and anti-fouling cellulose thin film composite membrane based on the hierarchical poly(vinyl alcohol-co-ethylene) nanofiber substrate. Cellulose, 2015, 22, 2717-2727.	2.4	13
147	Immobilization of Firefly Luciferase on PVA- <i>co</i> -PE Nanofibers Membrane as Biosensor for Bioluminescent Detection of ATP. ACS Applied Materials & Interfaces, 2015, 7, 20046-20052.	4.0	27
148	Application of New Materials in Water Hydraulic Pump. Applied Mechanics and Materials, 2014, 552, 76-79.	0.2	0
149	A novel hierarchically structured and highly hydrophilic poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 separator. Journal of Power Sources, 2014, 266, 29-35.	587 Td (a 4.0	lcohol-co-et 67
150	A novel paper-based flexible ammonia gas sensor via silver and SWNT-PABS inkjet printing. Sensors and Actuators B: Chemical, 2014, 197, 308-313.	4.0	63
151	A specially structured conductive nickel-deposited poly(ethylene terephthalate) nonwoven membrane intertwined with microbial pili-like poly(vinyl alcohol-co-ethylene) nanofibers and its application as an alcohol sensor. RSC Advances, 2014, 4, 40788-40793.	1.7	10
152	Effect of chemical treatments on transverse thermal conductivity of unidirectional abaca fiber/epoxy composite. Composites Part A: Applied Science and Manufacturing, 2014, 66, 227-236.	3.8	51
153	Hydrophilic PVA-co-PE nanofiber membrane functionalized with iminodiacetic acid by solid-phase synthesis for heavy metal ions removal. Reactive and Functional Polymers, 2014, 82, 98-102.	2.0	41
154	Stretchable Conductive Polypyrrole/Polyurethane (PPy/PU) Strain Sensor with Netlike Microcracks for Human Breath Detection. ACS Applied Materials & amp; Interfaces, 2014, 6, 1313-1319.	4.0	223
155	Novel fabrication of magnetic thermoplastic nanofibers via melt extrusion of immiscible blends. Polymers for Advanced Technologies, 2013, 24, 70-74.	1.6	10
156	A novel high flux poly(trimethylene terephthalate) nanofiber membrane for microfiltration media. Separation and Purification Technology, 2013, 116, 199-205.	3.9	35
157	High performance filtration nanofibrous membranes based on hydrophilic poly(vinyl) Tj ETQq1 1 0.784314 rgBT /	Overlock	10_{32}^{Tf} 50 26
158	Surface zwitterionically functionalized PVA-co-PE nanofiber materials by click chemistry. RSC Advances, 2013, 3, 20922.	1.7	30
159	Stretchable conductive polyurethane elastomer in situ polymerized with multi-walled carbon nanotubes. Journal of Materials Chemistry C, 2013, 1, 2744.	2.7	52
160	Interface Chemistry Engineering for Stable Cycling of Reduced GO/SnO ₂ Nanocomposites for Lithium Ion Battery. Nano Letters, 2013, 13, 1711-1716.	4.5	278
161	Radical Graft Polymerization of an Allyl Monomer onto Hydrophilic Polymers and Their Antibacterial Nanofibrous Membranes. ACS Applied Materials & Interfaces, 2011, 3, 2838-2844.	4.0	52
162	Layer-by-Layer Structured Nanofiber Membranes with Photoinduced Self-Cleaning Functions. Journal of Physical Chemistry C, 2011, 115, 6825-6832.	1.5	45

#	Article	IF	CITATIONS
163	Morphological development of polypropylene in immiscible blends with cellulose acetate butyrate. Journal of Polymer Research, 2011, 18, 1947-1953.	1.2	8
164	Recyclability of cellulose acetate butyrate (CAB) matrix for controllable and productive fabrication of thermoplastic nanofibers. Carbohydrate Polymers, 2011, 83, 1095-1100.	5.1	19
165	Novel polymer blends from polyester and bioâ€based cellulose ester. Journal of Applied Polymer Science, 2011, 119, 2302-2309.	1.3	14
166	Controlled and high throughput fabrication of poly(trimethylene terephthalate) nanofibers via melt extrusion of immiscible blends. Materials Chemistry and Physics, 2010, 124, 48-51.	2.0	14
167	Morphology evolution of polypropylene in immiscible polymer blends for fabrication of nanofibers. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 921-931.	2.4	15
168	Fabrication of Tunable Submicro―or Nanoâ€Structured Polyethylene Materials from Immiscible Blends with Cellulose Acetate Butyrate. Macromolecular Materials and Engineering, 2008, 293, 657-665.	1.7	26
169	Controllable biotinylated poly(ethylene-co-glycidyl methacrylate) (PE-co-GMA) nanofibers to bind streptavidin–horseradish peroxidase (HRP) for potential biosensor applications. European Polymer Journal, 2008, 44, 2032-2039.	2.6	36
170	Assembly of Metal Nanoparticles on Electrospun Nylon 6 Nanofibers by Control of Interfacial Hydrogen-Bonding Interactions. Chemistry of Materials, 2008, 20, 6627-6632.	3.2	167
171	A High-Throughput, Controllable, and Environmentally Benign Fabrication Process of Thermoplastic Nanofibers. Macromolecular Materials and Engineering, 2007, 292, 407-414.	1.7	141
172	Formation and morphology of cellulose acetate butyrate (CAB)/polyolefin and CAB/polyester in situ microfibrillar and lamellar hybrid blends. European Polymer Journal, 2007, 43, 3587-3596.	2.6	60
173	Controllable fabrication and properties of polypropylene nanofibers. Polymer Engineering and Science, 2007, 47, 1865-1872.	1.5	36
174	Selfâ€Reinforced Polymer Nanofiber Aerogels for Multifunctional Applications. Macromolecular Materials and Engineering, 0, , 2100971.	1.7	3