
Xue-Ting Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6290461/publications.pdf Version: 2024-02-01

YUE-TING 7HAO

#	Article	IF	CITATIONS
1	Optimizing functional layer of cation exchange membrane by three-dimensional cross-linking quaternization for enhancing monovalent selectivity. Chinese Chemical Letters, 2022, 33, 2757-2762.	4.8	8
2	Hierarchical metal-phenolic-polyplex assembly toward superwetting membrane for high-flux and antifouling oil-water separation. Chinese Chemical Letters, 2022, 33, 3859-3864.	4.8	16
3	Hierarchical cactus-like microsphere network membranes engineered <i>via</i> multiple polyphenol-mediated complexation for efficient solar-powered water purification. Journal of Materials Chemistry A, 2022, 10, 13895-13906.	5.2	13
4	Surface modification of reverse osmosis membrane with tannic acid for improving chlorine resistance. Desalination, 2021, 498, 114639.	4.0	34
5	Super-hydrophobic F-TiO2@PP membranes with nano-scale "coral―like synapses for waste oil recovery. Separation and Purification Technology, 2021, 267, 118579.	3.9	23
6	Engineering superwetting membranes through polyphenol-polycation-metal complexation for high-efficient oil/water separation: From polyphenol to tailored nanostructures. Journal of Membrane Science, 2021, 630, 119310.	4.1	50
7	Preparation of monovalent cation perm-selective membranes by controlling surface hydration energy barrier. Separation and Purification Technology, 2021, 270, 118768.	3.9	25
8	Amphiphilic super-wetting membranes from direct immobilization of nanoparticles by in-situ polymerization and ionic cross-linking during phase inversion. Journal of Membrane Science, 2021, 635, 119469.	4.1	11
9	A rigid-flexible interpenetrating polyamide reverse osmosis membrane with improved antifouling property fabricated via two step modifications. Journal of Membrane Science, 2021, 637, 119625.	4.1	17
10	Polyphenol-engineered superwetting membranes with wrinkled microspherical organizations for high-efficient oil/water separation. Journal of Membrane Science, 2021, 640, 119813.	4.1	20
11	Green Fabrication of Tertrabutylammonium Styrene Sulfonate Cation-Exchange Membranes via a Solvent-Free Photopolymerization Strategy. Industrial & Engineering Chemistry Research, 2021, 60, 17055-17064.	1.8	1
12	Diatom-Inspired TiO ₂ -PANi-Decorated Bilayer Photothermal Foam for Solar-Driven Clean Water Generation. ACS Applied Materials & Interfaces, 2021, 13, 58124-58133.	4.0	34
13	In situ metal-polyphenol interfacial assembly tailored superwetting PES/SPES/MPN membranes for oil-in-water emulsion separation. Journal of Membrane Science, 2020, 615, 118566.	4.1	81
14	Antifouling modification of PVDF membranes via in situ mixed-charge copolymerization and TiO2 mineralization. Applied Surface Science, 2020, 525, 146564.	3.1	28
15	Polyphenol-metal manipulated nanohybridization of CNT membranes with FeOOH nanorods for high-flux, antifouling and self-cleaning oil/water separation. Journal of Membrane Science, 2020, 600, 117857.	4.1	80
16	Superwetting Oil/Water Separation Membrane Constructed from In Situ Assembled Metal–Phenolic Networks and Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 10000-10008.	4.0	113
17	Bioinspired synthesis of polyzwitterion/titania functionalized carbon nanotube membrane with superwetting property for efficient oil-in-water emulsion separation. Journal of Membrane Science, 2019, 589, 117257.	4.1	77
18	Constructing Antifouling Hybrid Membranes with Hierarchical Hybrid Nanoparticles for Oil-in-Water Emulsion Separation. ACS Omega, 2019, 4, 2320-2330.	1.6	38

XUE-TING ZHAO

#	Article	IF	CITATIONS
19	A facile preparation of positively charged composite nanofiltration membrane with high selectivity and permeability. Journal of Membrane Science, 2019, 581, 214-223.	4.1	99
20	Antifouling membrane surface construction: Chemistry plays a critical role. Journal of Membrane Science, 2018, 551, 145-171.	4.1	309
21	Modification of poly(amide-urethane-imide) (PAUI) thin film composite reverse osmosis membrane with nano-silver particles. RSC Advances, 2018, 8, 37817-37827.	1.7	4
22	Engineering of thermo-/pH-responsive membranes with enhanced gating coefficients, reversible behaviors and self-cleaning performance through acetic acid boosted microgel assembly. Journal of Materials Chemistry A, 2018, 6, 11874-11883.	5.2	42
23	Metal-polyphenol coordination networks: Towards engineering of antifouling hybrid membranes via in situ assembly. Journal of Membrane Science, 2018, 563, 435-446.	4.1	42
24	Dopamine-induced biomimetic mineralization for in situ developing antifouling hybrid membrane. Journal of Membrane Science, 2018, 560, 47-57.	4.1	61
25	CO ₂ separation membranes with high permeability and CO ₂ /N ₂ selectivity prepared by electrostatic self-assembly of polyethylenimine on reverse osmosis membranes. RSC Advances, 2017, 7, 14678-14687.	1.7	12
26	Aggregation suppressed thin film nanocomposite (TFN) membranes prepared with an in situ generation of TiO ₂ nanoadditives. RSC Advances, 2017, 7, 26136-26144.	1.7	23
27	Engineering amphiphilic nanofiltration membrane surfaces with a multi-defense mechanism for improved antifouling performances. Journal of Materials Chemistry A, 2016, 4, 7892-7902.	5.2	66
28	Antifouling membranes for sustainable water purification: strategies and mechanisms. Chemical Society Reviews, 2016, 45, 5888-5924.	18.7	977
29	Manipulating the multifunctionalities of polydopamine to prepare high-flux anti-biofouling composite nanofiltration membranes. RSC Advances, 2016, 6, 32863-32873.	1.7	23
30	Free-Standing Graphene Oxide-Palygorskite Nanohybrid Membrane for Oil/Water Separation. ACS Applied Materials & Interfaces, 2016, 8, 8247-8256.	4.0	214
31	Manipulating the segregation behavior of polyethylene glycol by hydrogen bonding interaction to endow ultrafiltration membranes with enhanced antifouling performance. Journal of Membrane Science, 2016, 499, 56-64.	4.1	91
32	Enhanced membrane antifouling and separation performance by manipulating phase separation and surface segregation behaviors through incorporating versatile modifier. Journal of Membrane Science, 2016, 499, 406-417.	4.1	54
33	Fouling Release. , 2016, , 815-816.		0
34	Fouling Release Membranes. , 2016, , 816-818.		0
35	Improved antifouling property of PVDF membranes by incorporating an amphiphilic block-like copolymer for oil/water emulsion separation. RSC Advances, 2015, 5, 21349-21359.	1.7	53
36	Coordination-enabled synergistic surface segregation for fabrication of multi-defense mechanism membranes. Journal of Materials Chemistry A, 2015, 3, 3325-3331.	5.2	83

XUE-TING ZHAO

#	Article	IF	CITATIONS
37	Fabrication of antifouling polymer–inorganic hybrid membranes through the synergy of biomimetic mineralization and nonsolvent induced phase separation. Journal of Materials Chemistry A, 2015, 3, 7287-7295.	5.2	84
38	Preparation of Antifouling Nanofiltration Membrane via Interfacial Polymerization of Fluorinated Polyamine and Trimesoyl Chloride. Industrial & Engineering Chemistry Research, 2015, 54, 8302-8310.	1.8	25
39	Investigation of antifouling universality of polyvinyl formal (PVF) membranes utilizing atomic force microscope (AFM) force curves. RSC Advances, 2015, 5, 36894-36901.	1.7	7
40	Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments. Journal of Membrane Science, 2015, 486, 195-206.	4.1	85
41	Preparation of pH-responsive membranes with amphiphilic copolymers by surface segregation method. Chinese Journal of Chemical Engineering, 2015, 23, 1283-1290.	1.7	13
42	Multiple antifouling capacities of hybrid membranes derived from multifunctional titania nanoparticles. Journal of Membrane Science, 2015, 495, 226-234.	4.1	34
43	Constructing a zwitterionic ultrafiltration membrane surface via multisite anchorage for superior long-term antifouling properties. RSC Advances, 2015, 5, 40126-40134.	1.7	20
44	A green approach to porous and dense antifouling membranes through solvent-free bulk polymerization. Chemical Engineering Science, 2015, 135, 501-508.	1.9	8
45	Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine. Journal of Membrane Science, 2015, 476, 10-19.	4.1	196
46	pH and temperature responsive porous membranes via an in situ bulk copolymerization approach. Polymer, 2014, 55, 1347-1357.	1.8	12
47	Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers. Desalination, 2014, 333, 59-65.	4.0	177
48	Improved performance of composite nanofiltration membranes by adding calcium chloride in aqueous phase during interfacial polymerization process. Journal of Membrane Science, 2014, 452, 90-96.	4.1	90
49	Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances. Journal of Membrane Science, 2014, 450, 111-123.	4.1	148
50	Surface fluorination of polyamide nanofiltration membrane for enhanced antifouling property. Journal of Membrane Science, 2014, 455, 15-23.	4.1	90
51	Improved Antifouling Properties of Poly(vinyl chloride) Ultrafiltration Membranes via Surface Zwitterionicalization. Industrial & Engineering Chemistry Research, 2014, 53, 14046-14055.	1.8	49
52	A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine). Journal of Membrane Science, 2014, 470, 9-17.	4.1	214
53	Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal. Journal of Membrane Science, 2014, 464, 100-109.	4.1	155
54	Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 2014, 39, 1668-1720.	11.8	174

XUE-TING ZHAO

#	Article	IF	CITATIONS
55	Antifouling, High-Flux Nanofiltration Membranes Enabled by Dual Functional Polydopamine. ACS Applied Materials & Interfaces, 2014, 6, 5548-5557.	4.0	189
56	Dopamine composite nanofiltration membranes prepared by self-polymerization and interfacial polymerization. Journal of Membrane Science, 2014, 465, 41-48.	4.1	161
57	Fouling Release Membranes. , 2014, , 1-3.		0
58	Cross-linked bovine serum albumin composite membranes prepared by interfacial polymerization with stimuli-response properties. Journal of Membrane Science, 2013, 445, 1-7.	4.1	25
59	Hierarchically engineered membrane surfaces with superior antifouling and self-cleaning properties. Journal of Membrane Science, 2013, 441, 93-101.	4.1	102
60	Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride. Journal of Membrane Science, 2013, 429, 235-242.	4.1	238
61	Polyamide nanofiltration membrane with high separation performance prepared by EDC/NHS mediated interfacial polymerization. Journal of Membrane Science, 2013, 427, 92-100.	4.1	95
62	Antifouling Membranes Prepared by a Solvent-Free Approach via Bulk Polymerization of 2-Hydroxyethyl Methacrylate. Industrial & Engineering Chemistry Research, 2013, 52, 13137-13145.	1.8	27
63	Preparation and Performance of Antifouling PVC/CPVC Blend Ultrafiltration Membranes. Industrial & amp; Engineering Chemistry Research, 2012, 51, 8308-8314.	1.8	53
64	Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. Journal of Membrane Science, 2012, 415-416, 824-834.	4.1	129
65	Efficient Wastewater Treatment by Membranes through Constructing Tunable Antifouling Membrane Surfaces. Environmental Science & Technology, 2011, 45, 6545-6552.	4.6	162
66	pH-responsive and fouling-release properties of PES ultrafiltration membranes modified by multi-functional block-like copolymers. Journal of Membrane Science, 2011, 382, 222-230.	4.1	45
67	Engineering a Robust, Versatile Amphiphilic Membrane Surface Through Forced Surface Segregation for Ultralow Fluxâ€Decline. Advanced Functional Materials, 2011, 21, 191-198.	7.8	169