Katsuhiko Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6290352/publications.pdf

Version: 2024-02-01

76 papers

1,664 citations

304368

22

h-index

301761 39 g-index

78 all docs 78 docs citations

times ranked

78

1668 citing authors

#	Article	IF	CITATIONS
1	Electrochemical Polymerization of Nitroxyl Radical Precursor Containing Phenol Side Chain in Aqueous Solution and Its Application to Electrochemical Analysis of Glucose. Bunseki Kagaku, 2022, 71, 191-196.	0.1	O
2	FAB-MS Measurement of 2-Hydroxyestrone and Monosaccharides Assisted by 4-Pyridineboronic Ester Derivatization. Heterocycles, 2022, 104, 1074.	0.4	0
3	Catalysis of electro-oxidation of antibiotics by nitroxyl radicals and the electrochemical sensing of vancomycin. RSC Advances, 2021, 11, 21622-21628.	1.7	10
4	Electrochemical Detection of Sesamol Dimer and its Application to Measurement of Radicals. Analytical Sciences, 2021, 37, 633-635.	0.8	1
5	Electrochemical Quantitative Evaluation of the Surface Charge of a Poly(1â€Vinylimidazole) Multilayer Film and Application to Nanopore pH Sensor. Electroanalysis, 2021, 33, 1633-1638.	1.5	2
6	Electropolymerization of Azure A and pH Sensing Using Poly(azure A)-modified Electrodes. Analytical Sciences, 2021, 37, 893-896.	0.8	2
7	Nitroxyl Radical/Copper-Catalyzed Electrooxidation of Alcohols and Amines at Low Potentials. Chemical and Pharmaceutical Bulletin, 2021, 69, 1005-1009.	0.6	2
8	Electrochemical Cleavage of the Carbon–Boron Bond in <i>p</i> -Acetamidophenylboronic Acid at Neutral pH Conditions. Chemical and Pharmaceutical Bulletin, 2021, 69, 1206-1208.	0.6	0
9	Carbon Nanotube Immobilized Electrode Using Amphiphilic Phospholipid Polymer with Antiâ€fouling and Dispersion Property for Electrochemical Analysis. Electroanalysis, 2020, 32, 898-901.	1.5	3
10	Electrochemical determination of choline using nortropine-N-oxyl for a non-enzymatic system. Sensing and Bio-Sensing Research, 2020, 27, 100302.	2.2	9
11	Enhancement of Hydrogen Peroxide Reduction Current by an Electrode Modified with Hybrid Polymer/Silica Particles and N , N â€diethyl―N â€(2â€methoxyâ€ethyl)―N â€methylammonium bis(trifluoromethylsulfonyl)imide. Electroanalysis, 2020, 32, 2113-2117.	1.5	O
12	Adsorption and Release of Rose Bengal on Layer-by-Layer Films of Poly(Vinyl Alcohol) and Poly(Amidoamine) Dendrimers Bearing 4-Carboxyphenylboronic Acid. Polymers, 2020, 12, 1854.	2.0	3
13	Voltammetric pH Measurements Using Azure A-Containing Layer-by-Layer Film Immobilized Electrodes. Polymers, 2020, 12, 2328.	2.0	6
14	Decomposition of Glucose-Sensitive Layer-by-Layer Films Using Hemin, DNA, and Glucose Oxidase. Polymers, 2020, 12, 319.	2.0	6
15	Electrochemical Detection of Triglycerides Based on an Enzymatic Reaction and Electrocatalytic Oxidation with Nortropineâ€∢i>Nà€oxyl. Electroanalysis, 2019, 31, 603-606.	1.5	5
16	Lactate-induced decomposition of layer-by-layer films composed of phenylboronic acid-modified poly(allylamine) and poly(vinyl alcohol) under extracellular tumor conditions. Journal of Colloid and Interface Science, 2018, 510, 302-307.	5.0	14
17	Electrocatalytic Oxidation of Carbohydrates Mediated by Nitroxyl Radicalâ€modified Electrodes in Aqueous Solution. Electroanalysis, 2018, 30, 24-26.	1.5	9
18	Preparation of Microparticles Capable of Glucose-Induced Insulin Release under Physiological Conditions. Polymers, 2018, 10, 1164.	2.0	8

#	Article	IF	CITATIONS
19	Electrochemical Oxidation of Amines Using a Nitroxyl Radical Catalyst and the Electroanalysis of Lidocaine. Catalysts, 2018, 8, 649.	1.6	16
20	Preparation of Hydrogen Peroxide Sensitive Nanofilms by a Layer-by-Layer Technique. Nanomaterials, 2018, 8, 941.	1.9	3
21	Preparation of Nafion/Polycation Layer-by-Layer Films for Adsorption and Release of Insulin. Polymers, 2018, 10, 812.	2.0	7
22	Preparation of multilayer films using the negative charge of phenylboronic acid and its response to pH change, fructose, and hydrogen peroxide. Colloid and Polymer Science, 2018, 296, 1573-1580.	1.0	7
23	Comparison of NAD with NADPâ€dependent Glutamate Dehydrogenase, and CNT with rGOâ€modified Electrodes, for the Construction of Glutamate Sensors. Electroanalysis, 2018, 30, 2237-2240.	1.5	5
24	Preparation of H2O2-induced poly (amidoamine) dendrimer-release multilayer films. Colloid and Polymer Science, 2017, 295, 877-882.	1.0	5
25	Preparation of a PVA/PBA dispersion and its response to glucose, fructose, and hydrogen peroxide. Colloid and Polymer Science, 2017, 295, 1521-1525.	1.0	1
26	Phenylboronic Acid-Functionalized Layer-by-Layer Assemblies for Biomedical Applications. Polymers, 2017, 9, 202.	2.0	25
27	pH- and sugar-sensitive multilayer films composed of phenylboronic acid (PBA)-modified poly(allylamine hydrochloride) (PBA-PAH) and poly(vinyl alcohol) (PVA): A significant effect of PBA content on the film stability. Materials Science and Engineering C, 2016, 62, 474-479.	3.8	24
28	Electrochemical Determination of Dâ€Glucose Using Nortropineâ€∢i>Nà€oxyl under Physiological Conditions. Electroanalysis, 2015, 27, 2272-2274.	1.5	18
29	pH-Dependent Release of Insulin from Layer-by-Layer-Deposited Polyelectrolyte Microcapsules. Polymers, 2015, 7, 1269-1278.	2.0	27
30	Preparation of multilayer films consisting of glucose oxidase and poly(amidoamine) dendrimer and their stability. Colloid and Polymer Science, 2015, 293, 2713-2718.	1.0	6
31	Glucose-induced decomposition of layer-by-layer films composed of phenylboronic acid-bearing poly(allylamine) and poly(vinyl alcohol) under physiological conditions. Journal of Materials Chemistry B, 2015, 3, 7796-7802.	2.9	27
32	Release of Insulin from Calcium Carbonate Microspheres with and without Layer-by-Layer Thin Coatings. Polymers, 2014, 6, 2157-2165.	2.0	14
33	Layer-by-layer deposited nano- and micro-assemblies for insulin delivery: A review. Materials Science and Engineering C, 2014, 34, 384-392.	3.8	71
34	Multilayer films composed of phenylboronic acid-modified dendrimers sensitive to glucose under physiological conditions. Journal of Materials Chemistry B, 2014, 2, 5809.	2.9	42
35	Loading and release of fluorescent dye from layer-by-layer film-coated magnetic particles in response to hydrogen peroxide. Journal of Colloid and Interface Science, 2014, 432, 92-97.	5.0	22
36	H ₂ O ₂ -Induced Decomposition of Layer-by-Layer Films Consisting of Phenylboronic Acid-Bearing Poly(allylamine) and Poly(vinyl alcohol). Langmuir, 2014, 30, 9247-9250.	1.6	41

3

#	Article	IF	CITATIONS
37	Pyridoxine-selective Fluorescence Quenching by Graphite Oxide-containing Molecularly Imprinted Polymers. Bunseki Kagaku, 2014, 63, 311-315.	0.1	O
38	Poly(lactic acid) Microparticles Coated with Insulin-Containing Layer-by-Layer Films and Their pH-Dependent Insulin Release. Journal of Nanoscience and Nanotechnology, 2014, 14, 3100-3105.	0.9	8
39	Use of Amphoteric Copolymer Films as Sacrificial Layers for Constructing Free-Standing Layer-by-Layer Films. Materials, 2013, 6, 2351-2359.	1.3	8
40	Dual pH-sensitive layer-by-layer films containing amphoteric poly(diallylamine-co-maleic acid). Journal of Colloid and Interface Science, 2013, 399, 26-32.	5.0	10
41	Dendrimers in Layer-by-Layer Assemblies: Synthesis and Applications. Molecules, 2013, 18, 8440-8460.	1.7	59
42	Ion Permeability of Free-Suspended Layer-by-Layer (LbL) Films Prepared Using an Alginate Scaffold. Polymers, 2013, 5, 696-705.	2.0	5
43	Layer-by-layer Thin Films and Microcapsules for Biosensors and Controlled Release. Analytical Sciences, 2012, 28, 929-938.	0.8	68
44	Preparation of poly(methyl methacrylate) microcapsules by in situ polymerization on the surface of calcium carbonate particles. Journal of Colloid and Interface Science, 2012, 387, 123-126.	5.0	15
45	Preparation of free-suspended polyelectrolyte multilayer films using an alginate scaffold and their ion permeability. Materials Science and Engineering C, 2012, 32, 2649-2653.	3.8	1
46	Use of anionic polysaccharides for the preparation of insulin-containing layer-by-layer films and their pH stability. Polymer Bulletin, 2012, 69, 229-239.	1.7	7
47	Insulin-containing layer-by-layer films deposited on poly(lactic acid) microbeads for pH-controlled release of insulin. Colloids and Surfaces B: Biointerfaces, 2012, 89, 242-247.	2.5	33
48	Layer-by-layer films composed of poly(allylamine) and insulin for pH-triggered release of insulin. Colloids and Surfaces B: Biointerfaces, 2012, 91, 274-279.	2.5	29
49	Layer-by-layer construction of protein architectures through avidin–biotin and lectin–sugar interactions for biosensor applications. Analytical and Bioanalytical Chemistry, 2012, 402, 1749-1758.	1.9	92
50	Preparation of polyelectrolyte giant capsules using cross-linked alginate gels as core material. Polymer Bulletin, 2012, 68, 891-900.	1.7	10
51	pH- and sugar-sensitive layer-by-layer films and microcapsules for drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 809-821.	6.6	169
52	Preparation of avidin-containing polyelectrolyte microcapsules and their uptake and release properties. Polymer Bulletin, 2011, 66, 711-720.	1.7	14
53	Colorimetric response of fluorescein-modified multilayer thin films induced by electrolysis of water. Materials Science and Engineering C, 2011, 31, 258-261.	3.8	4
54	Avidin/PSS membrane microcapsules with biotin-binding activity. Journal of Colloid and Interface Science, 2011, 360, 519-524.	5.0	14

#	Article	IF	CITATIONS
55	Sugar-Sensitive Polyelectrolyte Microcapsules Containing Insulin. Kobunshi Ronbunshu, 2010, 67, 544-548.	0.2	10
56	Sugar-dependent solubility and fluorescence property of copolymers consisting of phenylboronic acid and 2-hydroxyethyl methacrylate moieties. Polymer Bulletin, 2010, 65, 807-814.	1.7	12
57	Electrode potential-dependent colorimetric response of fluorescein-modified layer-by-layer films in the presence of hydrogen peroxide. Journal of Colloid and Interface Science, 2010, 348, 441-445.	5.0	4
58	Layer-by-layer polyelectrolyte films containing insulin for pH-triggered release. Journal of Materials Chemistry, 2010, 20, 1546-1552.	6.7	68
59	Preparation of Insulin-Containing Microcapsules by a Layer-by-Layer Deposition of Concanavalin A and Glycogen. Journal of Nanoscience and Nanotechnology, 2009, 9, 386-390.	0.9	40
60	Preparation of dendrimer-loaded microcapsules by a layer-by-layer deposition of polyelectrolytes. Materials Science and Engineering C, 2009, 29, 2024-2028.	3.8	11
61	Electrochemically controlled release of -tetrakis(4-N-methylpyridyl)porphine from layer-by-layer thin films. Journal of Colloid and Interface Science, 2009, 333, 141-144.	5 . 0	16
62	pH-Stability of Layer-by-Layer Thin Films Composed of Carboxyl-Terminated Poly(amidoamine) Dendrimer and Poly(acrylic acid). Kobunshi Ronbunshu, 2009, 66, 75-78.	0.2	3
63	Layer-by-layer assembled thin films composed of carboxyl-terminated poly(amidoamine) dendrimer as a pH-sensitive nano-device. Journal of Colloid and Interface Science, 2008, 326, 35-40.	5 . 0	66
64	pH-Sensitive Thin Films Composed of Poly(methacrylic acid) and Carboxyl-Terminated Dendrimer. Sensor Letters, 2008, 6, 250-252.	0.4	6
65	Development of Functional Surfaces by Layered Thin Films Containing Proteins. Bunseki Kagaku, 2007, 56, 387-395.	0.1	2
66	Effects of hydrogen peroxide on the electrochemical decomposition of layer-by-layer thin films composed of 2-iminobiotin-labeled poly(ethyleneimine) and avidin. Journal of Colloid and Interface Science, 2007, 315, 396-399.	5.0	5
67	Electrochemically Induced Disintegration of Layer-by-Layer-Assembled Thin Films Composed of 2-Iminobiotin-Labeled Poly(ethyleneimine) and Avidin. Biomacromolecules, 2006, 7, 3302-3305.	2.6	57
68	Electrochemical determination of sugars by use of multilayer thin films of ferrocene-appended glycogen and concanavalin A. Analytical and Bioanalytical Chemistry, 2006, 386, 1899-1904.	1.9	17
69	Fluorometric determination of sugars using fluorescein-labeled concanavalin A–glycogen conjugates. Analytical and Bioanalytical Chemistry, 2006, 384, 1297-1301.	1.9	35
70	Sugar-Sensitive Thin Films Composed of Concanavalin A and Sugar-Bearing Polymers. Analytical Sciences, 2005, 21, 1375-1378.	0.8	17
71	Sugar-Induced Disintegration of Layer-by-Layer Assemblies Composed of Concanavalin A and Glycogen. Langmuir, 2005, 21, 797-799.	1.6	122
72	Disintegration of Layer-by-Layer Assemblies Composed of 2-Iminobiotin-Labeled Poly(ethyleneimine) and Avidin. Biomacromolecules, 2005, 6, 27-29.	2.6	94

Катѕиніко Ѕато

#	Article	IF	CITATION
73	Layered assemblies composed of sulfonated cyclodextrin and poly(allylamine). Colloid and Polymer Science, 2004, 282, 287-290.	1.0	6
74	Sugar-Sensitive Thin Films Composed of Concanavalin A and Glycogen. Analytical Sciences, 2004, 20, 1247-1248.	0.8	25
75	Polyelectrolyte layered assemblies containing azobenzene-modified polymer and anionic cyclodextrins. Materials Science and Engineering C, 2003, 23, 579-583.	3.8	7
76	Preparation of Polyelectrolyte-Layered Assemblies Containing Cyclodextrin and Their Binding Properties. Langmuir, 2003, 19, 7406-7412.	1.6	53