
Jinxing Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/62903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BnaA02.YTG1, encoding a tetratricopeptide repeat protein, is required for early chloroplast biogenesis in Brassica napus. Crop Journal, 2022, 10, 597-610.	2.3	3
2	Brassica evolution of essential BnaFtsH1 genes involved in the PSII repair cycle and loss of FtsH5. Plant Science, 2022, 315, 111128.	1.7	4
3	BnaA03.MKK5-BnaA06.MPK3/BnaC03.MPK3 Module Positively Contributes to Sclerotinia sclerotiorum Resistance in Brassica napus. Plants, 2022, 11, 609.	1.6	10
4	Combined BSA-Seq Based Mapping and RNA-Seq Profiling Reveal Candidate Genes Associated with Plant Architecture in Brassica napus. International Journal of Molecular Sciences, 2022, 23, 2472.	1.8	18
5	Comparative transcriptomic analysis reveals the molecular mechanism underlying seedling biomass heterosis in Brassica napus. BMC Plant Biology, 2022, 22, .	1.6	4
6	Identification and Fine Mapping of the Candidate Gene Controlling Multi-Inflorescence in Brassica napus. International Journal of Molecular Sciences, 2022, 23, 7244.	1.8	5
7	Fine Mapping and Identification of BnaC06.FtsH1, a Lethal Gene That Regulates the PSII Repair Cycle in Brassica napus. International Journal of Molecular Sciences, 2021, 22, 2087.	1.8	5
8	High-generation near-isogenic lines combined with multi-omics to study the mechanism of polima cytoplasmic male sterility. BMC Plant Biology, 2021, 21, 130.	1.6	8
9	A mitochondria-localized pentatricopeptide repeat protein is required to restore hau cytoplasmic male sterility in Brassica napus. Theoretical and Applied Genetics, 2021, 134, 1377-1386.	1.8	11
10	Generation of novel selfâ€incompatible <i>Brassica napus</i> by CRISPR/Cas9. Plant Biotechnology Journal, 2021, 19, 875-877.	4.1	21
11	QTL Mapping and Diurnal Transcriptome Analysis Identify Candidate Genes Regulating Brassica napus Flowering Time. International Journal of Molecular Sciences, 2021, 22, 7559.	1.8	18
12	The Bnapus50K array: a quick and versatile genotyping tool for <i>Brassica napus</i> genomic breeding and research. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	11
13	Overdominance at the Gene Expression Level Plays a Critical Role in the Hybrid Root Growth of Brassica napus. International Journal of Molecular Sciences, 2021, 22, 9246.	1.8	9
14	Increased seed number per silique in Brassica juncea by deleting cis â€regulatory region affecting BjCLV1 expression in carpel margin meristem. Plant Biotechnology Journal, 2021, 19, 2333-2348.	4.1	5
15	Characterization of a Common S Haplotype BnS-6 in the Self-Incompatibility of Brassica napus. Plants, 2021, 10, 2186.	1.6	3
16	Molecular Analysis Uncovers the Mechanism of Fertility Restoration in Temperature-Sensitive Polima Cytoplasmic Male-Sterile Brassica napus. International Journal of Molecular Sciences, 2021, 22, 12450.	1.8	5
17	Genetic and Molecular Characterization of a Self-Compatible Brassica rapa Line Possessing a New Class II S Haplotype. Plants, 2021, 10, 2815.	1.6	5
18	Two young genes reshape a novel interaction network inBrassica napus. New Phytologist, 2020, 225, 530-545.	3.5	8

JINXING TU

#	Article	IF	CITATIONS
19	Identification and fine mapping of a major locus controlling branching in Brassica napus. Theoretical and Applied Genetics, 2020, 133, 771-783.	1.8	23
20	The <i>Brassica napus</i> GATA transcription factor BnA5.ZML1 is a stigma compatibility factor. Journal of Integrative Plant Biology, 2020, 62, 1112-1131.	4.1	16
21	Transcriptome profiling reveals cytokinin promoted callus regeneration in Brassica juncea. Plant Cell, Tissue and Organ Culture, 2020, 141, 191-206.	1.2	13
22	Comparative phosphoproteomic analysis of compatible and incompatible pollination in L Acta Biochimica Et Biophysica Sinica, 2020, 52, 446-456.	0.9	8
23	Fine mapping of a silique length- and seed weight-related gene in Brassica napus. Theoretical and Applied Genetics, 2019, 132, 2985-2996.	1.8	15
24	Functional Analysis of M-Locus Protein Kinase Revealed a Novel Regulatory Mechanism of Self-Incompatibility in Brassica napus L International Journal of Molecular Sciences, 2019, 20, 3303.	1.8	27
25	Construction of restorer lines and molecular mapping for restorer gene of hau cytoplasmic male sterility in Brassica napus. Theoretical and Applied Genetics, 2019, 132, 2525-2539.	1.8	6
26	Tapetal Expression of BnaC.MAGL8.a Causes Male Sterility in Arabidopsis. Frontiers in Plant Science, 2019, 10, 763.	1.7	6
27	Ceneration of Transgenic Self-Incompatible Arabidopsis thaliana Shows a Genus-Specific Preference for Self-Incompatibility Genes. Plants, 2019, 8, 570.	1.6	19
28	Identification of miRNAs that regulate silique development in Brassica napus. Plant Science, 2018, 269, 106-117.	1.7	27
29	Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy, 2018, 14, 702-714.	4.3	27
30	Inheritance and gene mapping of the white flower trait in Brassica juncea. Molecular Breeding, 2018, 38, 1.	1.0	9
31	Interactions of <i><scp>WRKY</scp>15</i> and <i><scp>WRKY</scp>33</i> transcription factors and their roles in the resistance of oilseed rape to <i>Sclerotinia</i> infection. Plant Biotechnology Journal, 2018, 16, 911-925.	4.1	53
32	Association mapping of salt tolerance traits at germination stage of rapeseed (Brassica napus L.). Euphytica, 2018, 214, 1.	0.6	14
33	Genome-Wide DNA Methylation Comparison between Brassica napus Genic Male Sterile Line and Restorer Line. International Journal of Molecular Sciences, 2018, 19, 2689.	1.8	16
34	Genome-Wide Association Study of Cadmium Accumulation at the Seedling Stage in Rapeseed (Brassica) Tj ETQ	10.0.0 rgB	T /Overlock 1
35	Mechanism of Salt-Induced Self-Compatibility Dissected by Comparative Proteomic Analysis in Brassica napus L International Journal of Molecular Sciences, 2018, 19, 1652.	1.8	10

Jinxing Tu

#	Article	IF	CITATIONS
37	Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. Plant Molecular Biology, 2017, 93, 579-592.	2.0	36
38	Identification of different cytoplasms based on newly developed mitotype-specific markers for marker-assisted selection breeding in Brassica napus L. Plant Cell Reports, 2017, 36, 901-909.	2.8	17
39	Trilocular phenotype in Brassica juncea L. resulted from interruption of CLAVATA1 gene homologue (BjMc1) transcription. Scientific Reports, 2017, 7, 3498.	1.6	35
40	Genome-Wide Association Study Reveals the Genetic Architecture Underlying Salt Tolerance-Related Traits in Rapeseed (Brassica napus L.). Frontiers in Plant Science, 2017, 8, 593.	1.7	89
41	Time-Course Transcriptome Analysis of Compatible and Incompatible Pollen-Stigma Interactions in Brassica napus L Frontiers in Plant Science, 2017, 8, 682.	1.7	19
42	Transcriptomic Analysis of Seed Coats in Yellow-Seeded Brassica napus Reveals Novel Genes That Influence Proanthocyanidin Biosynthesis. Frontiers in Plant Science, 2017, 8, 1674.	1.7	55
43	BnaA.bZIP1 Negatively Regulates a Novel Small Peptide Gene, BnaC.SP6, Involved in Pollen Activity. Frontiers in Plant Science, 2017, 8, 2117.	1.7	1
44	Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (<i>Brassica napus L.</i>). DNA Research, 2016, 23, dsv035.	1.5	154
45	Genome-Wide Association Study Provides Insight into the Genetic Control of Plant Height in Rapeseed (Brassica napus L.). Frontiers in Plant Science, 2016, 7, 1102.	1.7	49
46	Ectopic Expression of <i>BnaC.CP20.1</i> Results in Premature Tapetal Programmed Cell Death in Arabidopsis. Plant and Cell Physiology, 2016, 57, 1972-1984.	1.5	22
47	Breeding signature of combining ability improvement revealed by a genomic variation map from recurrent selection population in Brassica napus. Scientific Reports, 2016, 6, 29553.	1.6	21
48	Altered Transcription and Neofunctionalization of Duplicated Genes Rescue the Harmful Effects of a Chimeric Gene in <i>Brassica napus</i> . Plant Cell, 2016, 28, 2060-2078.	3.1	28
49	Identification of a nuclear-recessive gene locus for male sterility on A2 chromosome using the Brassica 60ÂK SNP array in non-heading Chinese cabbage. Genes and Genomics, 2016, 38, 1151-1157.	0.5	5
50	Genome-Wide Association Study Dissecting the Genetic Architecture Underlying the Branch Angle Trait in Rapeseed (Brassica napus L.). Scientific Reports, 2016, 6, 33673.	1.6	55
51	Helitron-like transposons contributed to the mating system transition from out-crossing to self-fertilizing in polyploid Brassica napus L Scientific Reports, 2016, 6, 33785.	1.6	31
52	Heterodimer Formation of BnPKSA or BnPKSB with BnACOS5 Constitutes a Multienzyme Complex in Tapetal Cells and is Involved in Male Reproductive Development in <i>Brassica napus</i> . Plant and Cell Physiology, 2016, 57, 1643-1656.	1.5	25
53	Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L Molecular Genetics and Genomics, 2016, 291, 1523-1534.	1.0	34
54	Genetic distance revealed by genomic single nucleotide polymorphisms and their relationships with harvest index heterotic traits in rapeseed (Brassica napus L.). Euphytica, 2016, 209, 41-47.	0.6	16

JINXING TU

#	Article	IF	CITATIONS
55	Interacted QTL Mapping in Partial NCII Design Provides Evidences for Breeding by Design. PLoS ONE, 2015, 10, e0121034.	1.1	12
56	Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015, 16, 379.	1.2	91
57	Tribenuron-Methyl Induces Male Sterility through Anther-Specific Inhibition of Acetolactate Synthase Leading to Autophagic Cell Death. Molecular Plant, 2015, 8, 1710-1724.	3.9	30
58	Neofunctionalization of Duplicated <i>Tic40</i> Genes Caused a Gain-of-Function Variation Related to Male Fertility in <i>Brassica oleracea</i> Lineages Â. Plant Physiology, 2014, 166, 1403-1419.	2.3	17
59	Gene expression and genetic analysis reveal diverse causes of recessive self-compatibility in Brassica napus L BMC Genomics, 2014, 15, 1037.	1.2	6
60	Identification of molecular markers linked to trilocular gene (mc1) in Brassica juncea L Molecular Breeding, 2014, 33, 425-434.	1.0	24
61	Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus. BMC Genomics, 2014, 15, 258.	1.2	76
62	The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014, 5, 3930.	5.8	918
63	The genetic characterization of self-incompatibility in a Brassica napus line with promising breeding potential. Molecular Breeding, 2013, 31, 485-493.	1.0	7
64	A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. Journal of Experimental Botany, 2012, 63, 1285-1295.	2.4	77
65	BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus. Journal of Experimental Botany, 2012, 63, 2041-2058.	2.4	56
66	Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers. Theoretical and Applied Genetics, 2012, 124, 1193-1200.	1.8	25
67	BnaC.Tic40, a plastid inner membrane translocon originating from <i>Brassica oleracea</i> , is essential for tapetal function and microspore development in <i>Brassica napus</i> . Plant Journal, 2011, 68, 532-545.	2.8	79
68	A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus: the role of abscisic acid in early anther development. Plant Molecular Biology, 2010, 72, 111-123.	2.0	46
69	Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant Journal, 2010, 63, 925-938.	2.8	129
70	Development of SCAR markers linked to self-incompatibility in Brassica napus L Molecular Breeding, 2008, 21, 305-315.	1.0	21
71	Molecular markers linked to Bn;rf: a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L Euphytica, 2008, 164, 377-384.	0.6	18
72	Distribution of S haplotypes and its relationship with restorer–maintainers of self-incompatibility in cultivated Brassica napus. Theoretical and Applied Genetics, 2008, 117, 171-179.	1.8	13

JINXING TU

#	Article	IF	CITATIONS
73	QTL analysis of yield-related traits and their association with functional markers in Brassica napus L Australian Journal of Agricultural Research, 2007, 58, 759.	1.5	33
74	Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L Theoretical and Applied Genetics, 2007, 115, 113-118.	1.8	41
75	Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theoretical and Applied Genetics, 2007, 115, 849-858.	1.8	179
76	Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L Theoretical and Applied Genetics, 2006, 113, 643-650.	1.8	87