Kai Guo

List of Publications by Citations

Source: https://exaly.com/author-pdf/6289541/kai-guo-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82
papers
1,370
citations
1-index
20
h-index
g-index

100
ext. papers
20
h-index
g-index

4.73
ext. citations
avg, IF
L-index

#	Paper	IF	Citations
82	Heterostructured Nanorings of Fe-FeO@C Hybrid with Enhanced Microwave Absorption Performance. <i>ACS Applied Materials & Discreta (Materials & Materials & Materials</i>	9.5	180
81	High-Temperature Oxidation-Resistant ZrNB/SiC Nanohybrid for Enhanced Microwave Absorption. <i>ACS Applied Materials & District Science</i> , 2019 , 11, 15869-15880	9.5	110
80	Achieving Ultrafast Hole Transfer at the Monolayer MoS2 and CH3NH3PbI3 Perovskite Interface by Defect Engineering. <i>ACS Nano</i> , 2016 , 10, 6383-91	16.7	90
79	Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. <i>Nature Communications</i> , 2018 , 9, 1481	17.4	78
78	Ultra-Thin Reflective Metamaterial Polarization Rotator Based on Multiple Plasmon Resonances. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2015 , 14, 1157-1160	3.8	72
77	Fatigue mechanism of yttrium-doped hafnium oxide ferroelectric thin films fabricated by pulsed laser deposition. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 3486-3497	3.6	56
76	Ultrabroadband Design for Linear Polarization Conversion and Asymmetric Transmission Crossing X- and K- Band. <i>Scientific Reports</i> , 2016 , 6, 33826	4.9	41
75	Intelligent Biomimetic Chameleon Skin with Excellent Self-Healing and Electrochromic Properties. <i>ACS Applied Materials & District Self-Healing and Electrochromic Properties</i> .	9.5	39
74	Directly grown high-performance WO3 films by a novel one-step hydrothermal method with significantly improved stability for electrochromic applications. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13956-13967	13	36
73	Enhanced Valley Zeeman Splitting in Fe-Doped Monolayer MoS. ACS Nano, 2020, 14, 4636-4645	16.7	32
72	Prediction of Microwave Absorption Behavior of Grading Honeycomb Composites Based on Effective Permittivity Formulas. <i>IEEE Transactions on Antennas and Propagation</i> , 2015 , 63, 3496-3501	4.9	30
71	Switching the Optical Chirality in Magnetoplasmonic Metasurfaces Using Applied Magnetic Fields. <i>ACS Nano</i> , 2020 , 14, 2808-2816	16.7	30
70	Influence of Interface Structure on Magnetic Proximity Effect in Pt/Y3Fe5O12 Heterostructures. <i>ACS Applied Materials & Districtures</i> , 2016, 8, 8175-83	9.5	30
69	Spin-Valley Locking Effect in Defect States of Monolayer MoS. <i>Nano Letters</i> , 2020 , 20, 2129-2136	11.5	27
68	Valley Polarization of Trions and Magnetoresistance in Heterostructures of MoS and Yttrium Iron Garnet. <i>ACS Nano</i> , 2017 , 11, 12257-12265	16.7	25
67	Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies. <i>Applied Physics B: Lasers and Optics</i> , 2015 , 120, 617-622	1.9	24
66	Structural and Visible-NearInfrared Optical Properties of Cr-Doped TiO for Colored Cool Pigments. Nanoscale Research Letters, 2017 , 12, 597	5	23

(2017-2019)

65	Compact High-Efficiency Broadband Metamaterial Polarizing Reflector at Microwave Frequencies. IEEE Transactions on Microwave Theory and Techniques, 2019 , 67, 606-614	4.1	22
64	Atomic-Scale Layer-by-Layer Deposition of FeSiAl@ZnO@AlO Hybrid with Threshold Anti-Corrosion and Ultra-High Microwave Absorption Properties in Low-Frequency Bands. <i>Nano-Micro Letters</i> , 2021 , 13, 161	19.5	22
63	Dysprosium substituted Ce:YIG thin films with perpendicular magnetic anisotropy for silicon integrated optical isolator applications. <i>APL Materials</i> , 2019 , 7, 081119	5.7	21
62	Layer dependence of stacking order in nonencapsulated few-layer CrI3. <i>Science China Materials</i> , 2020 , 63, 413-420	7.1	20
61	Photonic amorphous topological insulator. <i>Light: Science and Applications</i> , 2020 , 9, 133	16.7	20
60	Oxidation behaviour of plasma-sprayed ZrB2-SiC coatings. <i>Ceramics International</i> , 2019 , 45, 2385-2392	5.1	19
59	Ultra-thin wideband magnetic-type metamaterial absorber based on LC resonator at low frequencies. <i>Applied Physics A: Materials Science and Processing</i> , 2015 , 121, 233-238	2.6	18
58	A Stretchable Metamaterial Absorber With Deformation Compensation Design at Microwave Frequencies. <i>IEEE Transactions on Antennas and Propagation</i> , 2019 , 67, 291-297	4.9	18
57	A novel self-healing electrochromic film based on a triphenylamine cross-linked polymer. <i>Polymer Chemistry</i> , 2017 , 8, 6981-6988	4.9	16
56	Toward Easy-to-Assemble, Large-Area Smart Windows: All-in-One Cross-Linked Electrochromic Material and Device. <i>ACS Applied Materials & Ma</i>	9.5	16
55	Enhanced Faraday rotation and magneto-optical figure of merit in gold grating/graphene/silicon hybrid magneto-plasmonic devices. <i>APL Photonics</i> , 2018 , 3, 016103	5.2	16
54	A Broadband Radar Absorber Based on Perforated Magnetic Polymer Composites Embedded With FSS. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 1-5	2	16
53	Observation of nonreciprocal magnetophonon effect in nonencapsulated few-layered CrI. <i>Science Advances</i> , 2020 , 6,	14.3	16
52	Enhanced Second Harmonic Generation from Ferroelectric HfO-Based Hybrid Metasurfaces. <i>ACS Nano</i> , 2019 , 13, 1213-1222	16.7	15
51	Design of Phase Gradient Coding Metasurfaces for Broadband Wave Modulating. <i>Scientific Reports</i> , 2018 , 8, 8672	4.9	13
50	Dual-band reflective polarization converter based on slotted wire resonators. <i>Applied Physics B:</i> Lasers and Optics, 2018 , 124, 1	1.9	11
49	Observation of Photonic Antichiral Edge States. <i>Physical Review Letters</i> , 2020 , 125, 263603	7.4	10
48	Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber. <i>Scientific Reports</i> , 2017 , 7, 46093	4.9	9

47	Ultra-broadband absorption in mid-infrared spectrum with graded permittivity metamaterial waveguide structure. <i>Applied Physics B: Lasers and Optics</i> , 2015 , 118, 409-415	1.9	9
46	Strain tunable magnetic properties of 3d transition-metal ion doped monolayer MoS2: A first-principles study. <i>AIP Advances</i> , 2018 , 8, 055917	1.5	9
45	Ferromagnetic and ferroelectric two-dimensional materials for memory application. <i>Nano Research</i> , 2021 , 14, 1802-1813	10	9
44	Bose E instein oscillators and the excitation mechanism of free excitons in 2D layered organic I horganic perovskites. <i>RSC Advances</i> , 2017 , 7, 18366-18373	3.7	7
43	Magnetic-brightening and control of dark exciton in CsPbBr3 perovskite. <i>Science China Materials</i> , 2020 , 63, 1503-1509	7.1	7
42	Large-scale, power-efficient Au/VO2 active metasurfaces for ultrafast optical modulation. <i>Nanophotonics</i> , 2020 , 10, 909-918	6.3	7
41	Generation and Focusing of Orbital Angular Momentum Based on Polarized Reflectarray at Microwave Frequency. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2021 , 69, 1829-1837	4.1	7
40	Microwave absorbing performance enhancement of Fe75Si15Al10 composites by selective surface oxidation. <i>Journal of Applied Physics</i> , 2017 , 122, 105103	2.5	6
39	The effect of ethylene glycol on pore arrangement of anodic aluminium oxide prepared by hard anodization. <i>Royal Society Open Science</i> , 2018 , 5, 171412	3.3	6
38	Oblique Incidence Performance of Microwave Absorbers Based on Magnetic Polymer Composites. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	6
37	Magnetic Proximity Effect and Anomalous Hall Effect in Pt/Y3Fe5\AlxO12 Heterostructures. <i>Physical Review Applied</i> , 2018 , 10,	4.3	6
36	Magnetic Properties of Hexagonal Barium Ferrite Films on Pt(111)/Al2O3(0001) Substrate Based on Optimized Thickness of Pt. <i>IEEE Nanotechnology Magazine</i> , 2018 , 17, 56-60	2.6	5
35	Observation of optical gyromagnetic properties in a magneto-plasmonic metamaterial <i>Nature Communications</i> , 2022 , 13, 1719	17.4	5
34	Control of Resonance Absorption Modes for Broadband Infrared Metamaterial Absorber. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-10	1.8	4
33	Enhancing the Microwave Absorption Properties of Fellul BiB Nanocomposite Flakes by Coating With Spinel Ferrite NiFe2O4. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	4
32	An Anomalous Magneto-Optic Effect in Epitaxial Indium Selenide Layers. <i>Nano Letters</i> , 2020 , 20, 5330-	5313185	4
31	Structural, electronic properties and enhancement of electrical polarization in Er2NiMnO6/La2NiMnO6 superlattice by first-principles calculations. <i>AIP Advances</i> , 2016 , 6, 035219	1.5	4
30	Design of phase matching chessboard-like electromagnetic metasurfaces for wideband radar cross section reduction. <i>Microwave and Optical Technology Letters</i> , 2019 , 61, 2037-2045	1.2	3

(2021-2015)

29	Compositional Control and Millimeter-Wave Properties of Micro-/Nano-Sized \$ {M}\$ -Type Barium Hexaferrite Synthesized by Hydrothermal Method. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	3
28	Low fractal dimension modified drilling-hole wall for PTFE high-frequency board copper plating with plasma treatment. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 48052	2.9	3
27	Multiwavelength magnetic coding of helical luminescence in ferromagnetic 2D layered Crl <i>IScience</i> , 2022 , 25, 103623	6.1	3
26	Large Electromagnetic Wave Absorbing Bandwidth of Composites Containing Fe3O4 Nanoribbons. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	2
25	Tunable magnetic textures and excitation modes in FePt multilayer films RSC Advances, 2020, 10, 256	53 9,⊋ 5€	54 <u>4</u>
24	A novel terahertz phased array based on coupled oscillators 2018,		2
23	On-Chip Nonreciprocal Photonic Devices Based on Hybrid Integration of Magneto-Optical Garnet Thin Films on Silicon. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2022 , 28, 1-15	3.8	2
22	Equivalent electromagnetic parameters extraction method for graded honeycomb absorbing materials. <i>Applied Physics B: Lasers and Optics</i> , 2021 , 127, 1	1.9	2
21	Wavefront Control of 2D Curved Coding Metasurfaces Based on Extended Array Theory. <i>IEEE Access</i> , 2019 , 7, 158427-158433	3.5	1
20	Design of the high-efficiency transmission-type polarization converter based on substrate-integrated waveguide (SIW) technology. <i>Applied Physics A: Materials Science and Processing</i> , 2019 , 125, 1	2.6	1
19	Enhanced Nucleation of Magnetic Vortex in Geometrically Confined Nanodots. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	1
18	Spin orientation driven static and dynamic magnetic process in amorphous FeCoBSi thin films. <i>Journal of Applied Physics</i> , 2015 , 117, 213906	2.5	1
17	Periodical distribution of Au nanoparticles through dewetting on patterned substrates. <i>Applied Physics Letters</i> , 2020 , 116, 103106	3.4	1
16	The Effect of Processing Parameters on the Formation and Properties of Al/Ni Core-Shell Pigments via a Galvanic Displacement Method. <i>Coatings</i> , 2018 , 8, 200	2.9	1
15	Preparation and Angle-Dependent Optical Properties of Brown Al/MnO Composite Pigments in Visible and Infrared Region. <i>Nanoscale Research Letters</i> , 2017 , 12, 266	5	1
14	The Structure and Magnetic Moment Study of FeBiAl by First-Principles Calculation. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	1
13	50 nm-thick yttrium iron garnet film with perpendicular magnetic anisotropy. <i>Chinese Physics B</i> ,	1.2	1
12	Design for a TE Mode Magneto-Optical Circulator Based on Asymmetric Silicon Slot Waveguides 2021 ,		1

11	Polyaddition enabled functional polymer/inorganic hybrid electrolytes for lithium metal batteries. Journal of Materials Chemistry A, 2021 , 9, 6881-6889	13	1
10	Influence of High-Enthalpy Atmospheric Plasma Spraying Process Parameters on Microwave Dielectric Properties of Y2O3 Coatings. <i>Journal of Thermal Spray Technology</i> , 2021 , 30, 898-906	2.5	1
9	A light weight and broadband metamaterial absorber with 3D cube unit cells. <i>Applied Physics A: Materials Science and Processing</i> , 2018 , 124, 1	2.6	1
8	Circular Displacement Current Induced Anomalous Magneto-Optical Effects in High Index Mie Resonators. <i>Laser and Photonics Reviews</i> ,2200067	8.3	1
7	Design of reducing mutual coupling in between two closely spaced dual-frequency antennas based on combined electromagnetic soft surfaces. <i>Applied Physics A: Materials Science and Processing</i> , 2018 , 124, 1	2.6	O
6	Covalently Linked Polymer/Inorganic Hybrid Electrolyte with Ionic Liquid for Lithium Metal Batteries. <i>ChemistrySelect</i> , 2021 , 6, 8416-8421	1.8	O
5	Full Control of Fano Spectral Profile with GST-Based Metamaterial. ACS Photonics, 2022, 9, 888-894	6.3	O
4	Design of an ultra-broadband microwave metamaterial absorber based on multilayer structures. <i>International Journal of RF and Microwave Computer-Aided Engineering</i> ,	1.5	O
3	Verification of topological magnetic properties of patterned ferromagnetic films. <i>Applied Physics Letters</i> , 2020 , 116, 262402	3.4	
2	Cooling property and application of Au B i2Te3 heterojunction nanowire array based on AAO template. <i>Journal of Materials Science</i> , 2021 , 56, 10892-10904	4.3	
1	Magnetic Properties of Ferromagnetic Microstructured Multilayer Films. <i>IEEE Magnetics Letters</i> , 2016 , 7, 1-4	1.6	