Min Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6289100/publications.pdf

Version: 2024-02-01

218381 5,307 42 26 citations h-index papers

40 g-index 44 44 44 9452 citing authors all docs docs citations times ranked

288905

#	Article	IF	CITATIONS
1	Real-Time Analysis of AKT Signaling Activities at Single-Cell Resolution Using Cyclic Peptide-Based Probes. Methods in Molecular Biology, 2022, 2394, 65-80.	0.4	О
2	Digitonin-facilitated delivery of imaging probes enables single-cell analysis of AKT signalling activities in suspension cells. Analyst, The, 2021 , 146 , 5307 - 5315 .	1.7	2
3	Single-Cell Profiling of Fatty Acid Uptake Using Surface-Immobilized Dendrimers. Journal of the American Chemical Society, 2021, 143, 11191-11198.	6.6	5
4	Single-cell profiling of D-2-hydroxyglutarate using surface-immobilized resazurin analogs. Biosensors and Bioelectronics, 2021, 190, 113368.	5.3	5
5	A cyclic peptide antenna ligand for enhancing terbium luminescence. Analyst, The, 2021, 146, 3474-3481.	1.7	4
6	Inhibiting Matrix Metalloproteinase-2 Activation by Perturbing Protein–Protein Interactions Using a Cyclic Peptide. Journal of Medicinal Chemistry, 2020, 63, 6979-6990.	2.9	16
7	Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line. Nature Communications, 2020, 11, 2345.	5.8	74
8	Monitoring the crosstalk between methylation and phosphorylation on histone peptides with host-assisted capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2020, 412, 6189-6198.	1.9	7
9	Liquid biopsy-based single-cell metabolic phenotyping of lung cancer patients for informative diagnostics. Nature Communications, 2019, 10, 3856.	5.8	37
10	Fluorescence imaging-based methods for single-cell protein analysis. Analytical and Bioanalytical Chemistry, 2019, 411, 4339-4347.	1.9	7
11	Sensing of citrulline modifications in histone peptides by deep cavitand hosts. Chemical Communications, 2019, 55, 13259-13262.	2.2	8
12	A Chemical Approach for Profiling Intracellular AKT Signaling Dynamics from Single Cells. Journal of the American Chemical Society, 2018, 140, 13586-13589.	6.6	10
13	Supramolecular Analytical Chemistry in Cancer Research. Advances in Cancer Research, 2018, 139, 147-161.	1.9	1
14	Surface Immobilization of Redoxâ€Labile Fluorescent Probes: Enabling Singleâ€Cell Coâ€Profiling of Aerobic Glycolysis and Oncogenic Protein Signaling Activities. Angewandte Chemie - International Edition, 2018, 57, 11554-11558.	7.2	13
15	Surface Immobilization of Redoxâ€Labile Fluorescent Probes: Enabling Singleâ€Cell Coâ€Profiling of Aerobic Glycolysis and Oncogenic Protein Signaling Activities. Angewandte Chemie, 2018, 130, 11728-11732.	1.6	О
16	Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13679-13684.	3.3	196
17	Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma. Cancer Cell, 2016, 29, 563-573.	7.7	140
18	Supramolecular Probes for Assessing Glutamine Uptake Enable Semi-Quantitative Metabolic Models in Single Cells. Journal of the American Chemical Society, 2016, 138, 3085-3093.	6.6	33

#	Article	IF	CITATIONS
19	Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chemical Reviews, 2015, 115, 7398-7501.	23.0	719
20	Aerosol droplet delivery of mesoporous silica nanoparticles: A strategy for respiratory-based therapeutics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1377-1385.	1.7	30
21	Chemical Methods for the Simultaneous Quantitation of Metabolites and Proteins from Single Cells. Journal of the American Chemical Society, 2015, 137, 4066-4069.	6.6	87
22	Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 248-258.	2.0	87
23	Sugar and pH dual-responsive mesoporous silica nanocontainers based on competitive binding mechanisms. Nanoscale, 2015, 7, 1067-1072.	2.8	41
24	Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nature Communications, 2014, 5, 3200.	5.8	90
25	Probing the Microenvironment in the Confined Pores of Mesoporous Silica Nanoparticles. Journal of Physical Chemistry Letters, 2014, 5, 839-842.	2.1	23
26	Microfluidics-Based Single-Cell Functional Proteomics for Fundamental and Applied Biomedical Applications. Annual Review of Analytical Chemistry, 2014, 7, 275-295.	2.8	65
27	Functioning of nanovalves on polymer coated mesoporous silica Nanoparticles. Nanoscale, 2013, 5, 10300.	2.8	42
28	An Enzymatic Chemical Amplifier Based on Mechanized Nanoparticles. Journal of the American Chemical Society, 2013, 135, 17659-17662.	6.6	37
29	Two-Wave Nanotherapy To Target the Stroma and Optimize Gemcitabine Delivery To a Human Pancreatic Cancer Model in Mice. ACS Nano, 2013, 7, 10048-10065.	7.3	163
30	Codelivery of an Optimal Drug/siRNA Combination Using Mesoporous Silica Nanoparticles To Overcome Drug Resistance in Breast Cancer <i>in Vitro</i> and <i>in Vivo</i> ACS Nano, 2013, 7, 994-1005.	7.3	525
31	pH-Responsive Dual Cargo Delivery from Mesoporous Silica Nanoparticles with a Metal-Latched Nanogate. Inorganic Chemistry, 2013, 52, 2044-2049.	1.9	67
32	Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 2013, 46, 792-801.	7.6	801
33	Development of Pharmaceutically Adapted Mesoporous Silica Nanoparticles Platform. Journal of Physical Chemistry Letters, 2012, 3, 358-359.	2.1	10
34	Targeted Intracellular Delivery of Antituberculosis Drugs to Mycobacterium tuberculosis-Infected Macrophages via Functionalized Mesoporous Silica Nanoparticles. Antimicrobial Agents and Chemotherapy, 2012, 56, 2535-2545.	1.4	219
35	Size-selective pH-operated megagates on mesoporous silica materials. Nanoscale, 2012, 4, 7569.	2.8	29
36	Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 2012, 134, 15790-15804.	6.6	372

#	Article	IF	CITATION
37	Differential Expression of Syndecan-1 Mediates Cationic Nanoparticle Toxicity in Undifferentiated versus Differentiated Normal Human Bronchial Epithelial Cells. ACS Nano, 2011, 5, 2756-2769.	7.3	86
38	Use of Size and a Copolymer Design Feature To Improve the Biodistribution and the Enhanced Permeability and Retention Effect of Doxorubicin-Loaded Mesoporous Silica Nanoparticles in a Murine Xenograft Tumor Model. ACS Nano, 2011, 5, 4131-4144.	7. 3	446
39	pH-Operated Mechanized Porous Silicon Nanoparticles. Journal of the American Chemical Society, 2011, 133, 8798-8801.	6.6	146
40	Synthesis of Mn and Se-Doping TiO ₂ Mesoporous Materials and their Antibacterial Efficacy under Visible Light Irradiation. Advanced Materials Research, 2011, 287-290, 1852-1855.	0.3	1
41	Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society, 2010, 132, 12690-12697.	6.6	550
42	The direct synthesis of mesoporous structured MnO ₂ /TiO ₂ nanocomposite: a novel visible-light active photocatalyst with large pore size. Nanotechnology, 2008, 19, 185604.	1.3	104