
Anthony A P Koppers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6289054/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	ArArCALC—software for 40Ar/39Ar age calculations. Computers and Geosciences, 2002, 28, 605-619.	2.0	861
2	Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 2014, 15, 4958-4983.	1.0	419
3	An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean. Nature Geoscience, 2013, 6, 976-981.	5.4	330
4	The return of subducted continental crust in Samoan lavas. Nature, 2007, 448, 684-687.	13.7	280
5	Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth and Planetary Science Letters, 2001, 185, 237-252.	1.8	218
6	PmagPy: Software package for paleomagnetic data analysis and a bridge to the Magnetics Information Consortium (MagIC) Database. Geochemistry, Geophysics, Geosystems, 2016, 17, 2450-2463.	1.0	213
7	Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism?. Geochemistry, Geophysics, Geosystems, 2003, 4, .	1.0	194
8	Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research: Solid Earth, 2015, 120, 1377-1399.	1.4	155
9	Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth and Planetary Science Letters, 2019, 506, 520-529.	1.8	148
10	Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique. Chemical Geology, 2000, 166, 139-158.	1.4	128
11	High-resolution40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	1.0	112
12	Implications of a nonlinear40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots. Geochemistry, Geophysics, Geosystems, 2004, 5, .	1.0	107
13	Interpreting and reporting 40Ar/39Ar geochronologic data. Bulletin of the Geological Society of America, 2021, 133, 461-487.	1.6	102
14	Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: New evidence for a plume origin. Earth and Planetary Science Letters, 2011, 304, 135-146.	1.8	99
15	Data reporting norms for 40Ar/39Ar geochronology. Quaternary Geochronology, 2009, 4, 346-352.	0.6	97
16	Constraints on past plate and mantle motion from new ages for the Hawaiianâ€Emperor Seamount Chain. Geochemistry, Geophysics, Geosystems, 2013, 14, 4564-4584.	1.0	95
17	The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion. Earth and Planetary Science Letters, 1998, 163, 53-68.	1.8	93
18	New insights into Phanerozoic tectonics of South China: Early Paleozoic sinistral and Triassic dextral transpression in the east Wuyishan and Chencai domains, NE Cathaysia. Tectonics, 2017, 36, 819-853.	1.3	90

#	Article	IF	CITATIONS
19	Seamount Subduction and Earthquakes. Oceanography, 2010, 23, 166-173.	0.5	86
20	Samoa reinstated as a primary hotspot trail. Geology, 2008, 36, 435.	2.0	85
21	Limited latitudinal mantle plume motion for the Louisville hotspot. Nature Geoscience, 2012, 5, 911-917.	5.4	85
22	Vailulu'u Seamount, Samoa: Life and death on an active submarine volcano. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6448-6453.	3.3	81
23	Defining the Word "Seamount". Oceanography, 2010, 23, 20-21.	0.5	80
24	Mantle plumes and their role in Earth processes. Nature Reviews Earth & Environment, 2021, 2, 382-401.	12.2	78
25	Samoan hot spot track on a "hot spot highway― Implications for mantle plumes and a deep Samoan mantle source. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	77
26	Asynchronous Bends in Pacific Seamount Trails: A Case for Extensional Volcanism?. Science, 2005, 307, 904-907.	6.0	72
27	Seamounts, knolls and petitâ€spot monogenetic volcanoes on the subducting Pacific Plate. Basin Research, 2008, 20, 543-553.	1.3	70
28	New ⁴⁰ Ar/ ³⁹ Ar age progression for the Louisville hot spot trail and implications for inter-hot spot motion. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	65
29	Late Cretaceous Polar Wander of the Pacific Plate: Evidence of a Rapid True Polar Wander Event. Science, 2000, 287, 455-459.	6.0	63
30	Age systematics of two young en echelon Samoan volcanic trails. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	56
31	One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature. Earth and Planetary Science Letters, 2008, 275, 285-295.	1.8	55
32	On the relative motions of long-lived Pacific mantle plumes. Nature Communications, 2018, 9, 854.	5.8	55
33	Intraplate Seamounts as a Window into Deep Earth Processes. Oceanography, 2010, 23, 42-57.	0.5	53
34	Paleomagnetism of the southwestern U.S.A. recorded by 0-5 Ma igneous rocks. Geochemistry, Geophysics, Geosystems, 2003, 4, .	1.0	51
35	Louisville Seamount Chain: Petrogenetic processes and geochemical evolution of the mantle source. Geochemistry, Geophysics, Geosystems, 2014, 15, 2380-2400.	1.0	42
36	Vailulu'u undersea volcano: The New Samoa. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	1.0	39

ANTHONY A P KOPPERS

#	Article	IF	CITATIONS
37	In search of longâ€ŧerm hemispheric asymmetry in the geomagnetic field: Results from high northern latitudes. Geochemistry, Geophysics, Geosystems, 2013, 14, 3234-3249.	1.0	39
38	Sr–Pb–Nd–Hf isotopes and 40Ar/39Ar ages reveal a Hawaii–Emperor-style bend in the Rurutu hotspot. Earth and Planetary Science Letters, 2018, 500, 168-179.	1.8	32
39	Hydrothermal venting at Vailulu'u Seamount: The smoking end of the Samoan chain. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	1.0	28
40	Geochemistry and age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises. Geochimica Et Cosmochimica Acta, 2016, 185, 302-327.	1.6	28
41	Seamounts in the Subduction Factory. Oceanography, 2010, 23, 176-181.	0.5	28
42	Nonlinear40Ar/39Ar age systematics along the Gilbert Ridge and Tokelau Seamount Trail and the timing of the Hawaii-Emperor Bend. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	1.0	27
43	Identification of the short-lived Santa Rosa geomagnetic excursion in lavas on Floreana Island (Galapagos) by ⁴⁰ Ar/ ³⁹ Ar geochronology. Geology, 2016, 44, 359-362.	2.0	27
44	Mantle plumes persevere. Nature Geoscience, 2011, 4, 816-817.	5.4	24
45	Deeply dredged submarine HIMU glasses from the <scp>T</scp> uvalu <scp>I</scp> slands, <scp>P</scp> olynesia: Implications for volatile budgets of recycled oceanic crust. Geochemistry, Geophysics, Geosystems, 2015, 16, 3210-3234.	1.0	23
46	The Canary record of the evolution of the North Atlantic Pliocene: New 40Ar/39Ar ages and some notable palaeontological evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435, 53-69.	1.0	23
47	Geochemical evidence in the northeast Lau Basin for subduction of the Cookâ€Austral volcanic chain in the Tonga Trench. Geochemistry, Geophysics, Geosystems, 2016, 17, 1694-1724.	1.0	23
48	Paleomagnetism and Paleosecular Variations From the Plioâ€Pleistocene Golan Heights Volcanic Plateau, Israel. Geochemistry, Geophysics, Geosystems, 2019, 20, 4319-4335.	1.0	20
49	Superplume mantle tracked isotopically the length of Africa from the Indian Ocean to the Red Sea. Nature Communications, 2019, 10, 5493.	5.8	20
50	Palaeomagnetic evidence for the persistence or recurrence of geomagnetic main field anomalies in the South Atlantic. Earth and Planetary Science Letters, 2016, 441, 113-124.	1.8	19
51	Highâ€Resolution ⁴⁰ Ar/ ³⁹ Ar Geochronology of the Louisville Seamounts IODP Expedition 330 Drill Sites: Implications for the Duration of Hot Spotâ€related Volcanism and Age Progressions. Geochemistry, Geophysics, Geosystems, 2019, 20, 4073-4102.	1.0	19
52	"Petit Spot†Rejuvenated Volcanism Superimposed on Plumeâ€Derived Samoan Shield Volcanoes: Evidence From a 645â€m Drill Core From Tutuila Island, American Samoa. Geochemistry, Geophysics, Geosystems, 2019, 20, 1485-1507.	1.0	19
53	40Ar/39Ar ages and zircon petrochronology for the rear arc of the Izu-Bonin-Marianas intra-oceanic subduction zone. International Geology Review, 2018, 60, 956-976.	1.1	18
54	Reshuffling the Columbia River Basalt chronology—Picture Gorge Basalt, the earliest- and longest-erupting formation. Geology, 2020, 48, 348-352.	2.0	18

#	Article	IF	CITATIONS
55	Late Cretaceous Ridge Reorganization, Microplate Formation, and the Evolution of the Rio Grande Rise – Walvis Ridge Hot Spot Twins, South Atlantic Ocean. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009390.	1.0	18
56	Geographic and Oceanographic Influences on Ferromanganese Crust Composition Along a Pacific Ocean Meridional Transect, 14 N to 14S. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008716.	1.0	17
57	Scalable models of data sharing in Earth sciences. Geochemistry, Geophysics, Geosystems, 2003, 4, .	1.0	16
58	Millennial‣cale Instability in the Geomagnetic Field Prior to the Matuyamaâ€Brunhes Reversal. Geochemistry, Geophysics, Geosystems, 2018, 19, 952-967.	1.0	14
59	Rifting of the oceanic Azores Plateau with episodic volcanic activity. Scientific Reports, 2020, 10, 19718.	1.6	14
60	Contrasting Old and Young Volcanism from Aitutaki, Cook Islands: Implications for the Origins of the Cook–Austral Volcanic Chain. Journal of Petrology, 2020, 61, .	1.1	14
61	Seamounts and Island Building. , 2015, , 405-421.		13
62	40Ar/39Ar dating of oceanic plagiogranite: Constraints on the initiation of seafloor spreading in the South China Sea. Lithos, 2018, 302-303, 421-426.	0.6	13
63	Simplifying Age Progressions within the Cookâ€Austral Islands using ARGUSâ€VI Highâ€Resolution ⁴⁰ Ar/ ³⁹ Ar Incremental Heating Ages. Geochemistry, Geophysics, Geosystems, 2019, 20, 4756-4778.	1.0	13
64	Vegetation succession and climate change across the Plio-Pleistocene transition in eastern Azerbaijan, central Eurasia (2.77–2.45†Ma). Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538, 109386.	1.0	13
65	A fluorescein tracer release experiment in the hydrothermally active crater of Vailulu'u volcano, Samoa. Journal of Geophysical Research, 2003, 108, .	3.3	12
66	When Hotspots Move: The New View of Mantle Dynamics Made Possible by Scientific Ocean Drilling. Oceanography, 2019, 32, 150-152.	0.5	12
67	Electronic data publication in geochemistry. Geochemistry, Geophysics, Geosystems, 2003, 4, .	1.0	11
68	Spatial and temporal variability in Marquesas Islands volcanism revealed by 3He/4He and the composition of olivine-hosted melt inclusions. Chemical Geology, 2018, 477, 161-176.	1.4	10
69	Seamount Catalog: Seamount Morphology, Maps, and Data Files. Oceanography, 2010, 23, 37-37.	0.5	9
70	Resurgence initiation and subsolidus eruption of cold carapace of warm magma at Toba Caldera, Sumatra. Communications Earth & Environment, 2021, 2, .	2.6	9
71	IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific. Scientific Drilling, 0, 15, 11-22.	1.0	8
72	Ultraslow Spreading and Volcanism at the Eastern End of Gakkel Ridge, Arctic Ocean. Geochemistry, Geophysics, Geosystems, 2019, 20, 6033-6050.	1.0	7

#	Article	IF	CITATIONS
73	U–Th disequilibrium, (U–Th)/He and 40Ar/39Ar geochronology of distal Nisyros Kyra tephra deposits on Datça peninsula (SW Anatolia). Quaternary Geochronology, 2020, 55, 101033.	0.6	7
74	Dating Clinopyroxene Phenocrysts in Submarine Basalts Using ⁴⁰ Ar/ ³⁹ Ar Geochronology. Geochemistry, Geophysics, Geosystems, 2019, 20, 1041-1053.	1.0	6
75	Quaternary ring plain- and valley-confined pyroclastic deposits of Aragats stratovolcano (Lesser) Tj ETQq1 1 0.784 Research, 2020, 401, 106928.	4314 rgBT 0.8	/Overlock 1 6
76	Two-stages of plume tail volcanism formed Ojin Rise Seamounts adjoining Shatsky Rise. Lithos, 2020, 372-373, 105652.	0.6	6
77	Paleogeotherms of a Midcrustal to Upper rustal Profile Across the Northern North China Block: Implications for the Thermal Structure of Continental Arcs. Tectonics, 2019, 38, 706-721.	1.3	5
78	Fourâ€Dimensional Paleomagnetic Dataset: Plioâ€Pleistocene Paleodirection and Paleointensity Results From the Erebus Volcanic Province, Antarctica. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020834.	1.4	5
79	Volcanic shutdown of the Panama Canal area following breakup of the Farallon plate. Lithos, 2019, 334-335, 190-204.	0.6	4
80	Thermochemical anomalies in the upper mantle control Gakkel Ridge accretion. Nature Communications, 2021, 12, 6962.	5.8	4
81	Seamounts, Ridges, and Reef Habitats of American Samoa. , 2012, , 791-806.		3
82	Seamount Sciences: Quo Vadis?. Oceanography, 2010, 23, 212-213.	0.5	3
83	Introduction to the Special Issue on Scientific Ocean Drilling: Looking to the Future. Oceanography, 2019, 32, 14-15.	0.5	3
84	Seismic Volcanostratigraphy: The Key to Resolving the Jan Mayen Microcontinent and Iceland Plateau Rift Evolution. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	3
85	Distinguishing Volcanic Contributions to the Overlapping Samoan and Cook-Austral Hotspot Tracks. Journal of Petrology, 2022, 63, .	1.1	3
86	Shipboard Characterization of Tuvalu, Samoa, and Lau Dredge Samples Using Laser-Induced Breakdown Spectroscopy (LIBS). Applied Spectroscopy, 2019, 73, 623-637.	1.2	2
87	Research-oriented data base for rock and paleomagnetism to be developed. Eos, 2002, 83, 560.	0.1	1
88	Spotlight: Vailulu'u Seamount. Oceanography, 2010, 23, 164-165.	0.5	1
89	Planning for Future Ocean Drilling With theJOIDES Resolution. Eos, 2013, 94, 229-230.	0.1	1
90	Large-Scale and Long-Term Volcanism on Oceanic Lithosphere. Developments in Marine Geology, 2014, , 553-597.	0.4	1

#	Article	IF	CITATIONS
91	Late Miocene and Early Pliocene coastal deposits from the Canary Islands: New records and paleoclimatic significance. Journal of African Earth Sciences, 2020, 164, 103802.	0.9	1
92	A Deeper Investment for Deep Time Science. Eos, 2018, 99, .	0.1	1
93	Scientific Ocean Drilling Charts a New Course. Eos, 2015, 96, .	0.1	Ο
94	Quo Vadis: Look to the Future. Oceanography, 2019, 32, 218-219.	0.5	0