
## Kai Dong

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/628895/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fiber/Fabricâ€Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and<br>Wearable Electronics and Artificial Intelligence. Advanced Materials, 2020, 32, e1902549.                               | 11.1 | 826       |
| 2  | A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber<br>triboelectric nanogenerators. Science Advances, 2020, 6, eaba9624.                                                  | 4.7  | 589       |
| 3  | A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of<br>Fiber Triboelectric Nanogenerators and Supercapacitors. ACS Nano, 2017, 11, 9490-9499.                                | 7.3  | 419       |
| 4  | A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical<br>Energy Harvesting and Multifunctional Pressure Sensing. Advanced Materials, 2018, 30, e1804944.                            | 11.1 | 396       |
| 5  | 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting<br>and as Selfâ€Powered Active Motion Sensors. Advanced Materials, 2017, 29, 1702648.                                        | 11.1 | 321       |
| 6  | An Ultra-Low-Friction Triboelectric–Electromagnetic Hybrid Nanogenerator for Rotation Energy<br>Harvesting and Self-Powered Wind Speed Sensor. ACS Nano, 2018, 12, 9433-9440.                                              | 7.3  | 286       |
| 7  | Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nature Communications, 2020, 11, 2868.                                                                   | 5.8  | 285       |
| 8  | Vitrimer Elastomerâ€Based Jigsaw Puzzleâ€Like Healable Triboelectric Nanogenerator for Selfâ€Powered<br>Wearable Electronics. Advanced Materials, 2018, 30, e1705918.                                                      | 11.1 | 265       |
| 9  | Versatile Core–Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Realâ€Time<br>Humanâ€Interactive Sensing. Advanced Energy Materials, 2018, 8, 1801114.                                                      | 10.2 | 212       |
| 10 | Selfâ€Powered Si/CdS Flexible Photodetector with Broadband Response from 325 to 1550 nm Based on<br>Pyroâ€phototronic Effect: An Approach for Photosensing below Bandgap Energy. Advanced Materials,<br>2018, 30, 1705893. | 11.1 | 163       |
| 11 | Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skinâ€Like Highly Sensitive<br>Selfâ€Powered Haptic Sensors. Advanced Functional Materials, 2021, 31, .                                               | 7.8  | 155       |
| 12 | Flexible and Stretchable Fiberâ€Shaped Triboelectric Nanogenerators for Biomechanical Monitoring<br>and Humanâ€Interactive Sensing. Advanced Functional Materials, 2021, 31, 2006679.                                      | 7.8  | 145       |
| 13 | Flame-Retardant Textile-Based Triboelectric Nanogenerators for Fire Protection Applications. ACS<br>Nano, 2020, 14, 15853-15863.                                                                                           | 7.3  | 133       |
| 14 | Continuous and Scalable Manufacture of Hybridized Nano-Micro Triboelectric Yarns for Energy<br>Harvesting and Signal Sensing. ACS Nano, 2020, 14, 4716-4726.                                                               | 7.3  | 130       |
| 15 | Advances in Highâ€Performance Autonomous Energy and Selfâ€Powered Sensing Textiles with Novel 3D<br>Fabric Structures. Advanced Materials, 2022, 34, e2109355.                                                             | 11.1 | 118       |
| 16 | Allâ€Nanofiber Selfâ€Powered Skinâ€Interfaced Realâ€Time Respiratory Monitoring System for Obstructive<br>Sleep Apneaâ€Hypopnea Syndrome Diagnosing. Advanced Functional Materials, 2021, 31, 2103559.                     | 7.8  | 115       |
| 17 | UV-Protective, Self-Cleaning, and Antibacterial Nanofiber-Based Triboelectric Nanogenerators for<br>Self-Powered Human Motion Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 11205-11214.                       | 4.0  | 111       |
| 18 | Smart textile triboelectric nanogenerators: Current status and perspectives. MRS Bulletin, 2021, 46, 512-521.                                                                                                              | 1.7  | 111       |

Kai Dong

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A Triboelectric–Electromagnetic Hybrid Nanogenerator with Broadband Working Range for Wind<br>Energy Harvesting and a Self-Powered Wind Speed Sensor. ACS Energy Letters, 0, , 1443-1452.  | 8.8  | 110       |
| 20 | Self-Powered Multifunctional Motion Sensor Enabled by Magnetic-Regulated Triboelectric Nanogenerator. ACS Nano, 2018, 12, 5726-5733.                                                       | 7.3  | 109       |
| 21 | Helical Fiber Strain Sensors Based on Triboelectric Nanogenerators for Self-Powered Human<br>Respiratory Monitoring. ACS Nano, 2022, 16, 2811-2821.                                        | 7.3  | 102       |
| 22 | Fully Fabric-Based Triboelectric Nanogenerators as Self-Powered Human–Machine Interactive<br>Keyboards. Nano-Micro Letters, 2021, 13, 103.                                                 | 14.4 | 96        |
| 23 | Recent Progress of Wearable Piezoelectric Nanogenerators. ACS Applied Electronic Materials, 2021, 3, 2449-2467.                                                                            | 2.0  | 88        |
| 24 | Complementary Electromagneticâ€Triboelectric Active Sensor for Detecting Multiple Mechanical<br>Triggering. Advanced Functional Materials, 2018, 28, 1705808.                              | 7.8  | 87        |
| 25 | A Hydrophobic Self-Repairing Power Textile for Effective Water Droplet Energy Harvesting. ACS Nano, 2021, 15, 18172-18181.                                                                 | 7.3  | 83        |
| 26 | Changes in volatile flavor of yak meat during oxidation based on multi-omics. Food Chemistry, 2022,<br>371, 131103.                                                                        | 4.2  | 82        |
| 27 | Sweatâ€Permeable, Biodegradable, Transparent and Selfâ€powered Chitosanâ€Based Electronic Skin with<br>Ultrathin Elastic Gold Nanofibers. Advanced Functional Materials, 2022, 32, .       | 7.8  | 80        |
| 28 | Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. Journal of Semiconductors, 2021, 42, 101601.        | 2.0  | 76        |
| 29 | Experimental and numerical analyses on the thermal conductive behaviors of carbon fiber/epoxy plain woven composites. International Journal of Heat and Mass Transfer, 2016, 102, 501-517. | 2.5  | 65        |
| 30 | Smart Textile Triboelectric Nanogenerators: Prospective Strategies for Improving Electricity Output<br>Performance. Nanoenergy Advances, 2022, 2, 133-164.                                 | 3.6  | 59        |
| 31 | High output direct-current power fabrics based on the air breakdown effect. Energy and Environmental Science, 2021, 14, 2460-2471.                                                         | 15.6 | 58        |
| 32 | Enhanced performances of Si/CdS heterojunction near-infrared photodetector by the piezo-phototronic effect. Nano Energy, 2018, 44, 311-318.                                                | 8.2  | 54        |
| 33 | A Novel Strategy to Fabricate Core-Sheath Structure Piezoelectric Yarns for Wearable Energy<br>Harvesters. Advanced Fiber Materials, 2021, 3, 239-250.                                     | 7.9  | 53        |
| 34 | Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites.<br>Composite Structures, 2016, 143, 9-22.                                                | 3.1  | 50        |
| 35 | A review on emerging biodegradable polymers for environmentally benign transient electronic skins.<br>Journal of Materials Science, 2021, 56, 16765-16789.                                 | 1.7  | 49        |
| 36 | Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors.<br>ACS Applied Materials & Interfaces, 2021, 13, 44868-44877.                              | 4.0  | 49        |

Kai Dong

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A mesoscale study of thermal expansion behaviors of epoxy resin and carbon fiber/epoxy<br>unidirectional composites based on periodic temperature and displacement boundary conditions.<br>Polymer Testing, 2016, 55, 44-60. | 2.3  | 47        |
| 38 | Temperature-dependent thermal expansion behaviors of carbon fiber/epoxy plain woven composites:<br>Experimental and numerical studies. Composite Structures, 2017, 176, 329-341.                                             | 3.1  | 45        |
| 39 | <scp>Largeâ€scale</scp> fabrication of <scp>coreâ€shell</scp> triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat, 2022, 4, .                                      | 6.8  | 44        |
| 40 | Ultrathin Eardrumâ€Inspired Selfâ€Powered Acoustic Sensor for Vocal Synchronization Recognition with the Assistance of Machine Learning. Small, 2022, 18, e2106960.                                                          | 5.2  | 43        |
| 41 | Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction. Nano Research, 2022, 15, 8389-8397.                                                                           | 5.8  | 41        |
| 42 | A Oneâ€Step Fabricated Sheathâ€Core Stretchable Fiber Based on Liquid Metal with Superior Electric<br>Conductivity for Wearable Sensors and Heaters. Advanced Materials Technologies, 2022, 7, .                             | 3.0  | 36        |
| 43 | Dual-mode thermal-regulating and self-powered pressure sensing hybrid smart fibers. Chemical<br>Engineering Journal, 2021, 420, 129650.                                                                                      | 6.6  | 34        |
| 44 | Experimental and numerical investigation on the thermal conduction properties of 2.5D angle-interlock woven composites. Composite Structures, 2016, 154, 319-333.                                                            | 3.1  | 33        |
| 45 | Ultrastretchable Organogel/Silicone Fiber-Helical Sensors for Self-Powered Implantable Ligament<br>Strain Monitoring. ACS Nano, 2022, 16, 10958-10967.                                                                       | 7.3  | 33        |
| 46 | Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection. Nano Energy, 2022, 97, 107168.                                                             | 8.2  | 28        |
| 47 | High-Efficiency Wastewater Purification System Based on Coupled Photoelectric–Catalytic Action<br>Provided by Triboelectric Nanogenerator. Nano-Micro Letters, 2021, 13, 194.                                                | 14.4 | 26        |
| 48 | Scalable and washable 3D warp-knitted spacer power fabrics for energy harvesting and pressure sensing. Journal Physics D: Applied Physics, 2021, 54, 424006.                                                                 | 1.3  | 23        |
| 49 | Enhanced Output of Onâ€Body Directâ€Current Power Textiles by Efficient Energy Management for<br>Sustainable Working of Mobile Electronics. Advanced Energy Materials, 2022, 12, .                                           | 10.2 | 23        |
| 50 | Comparisons of thermal conductive behaviors of epoxy resin in unidirectional composite materials.<br>Journal of Thermal Analysis and Calorimetry, 2016, 124, 775-789.                                                        | 2.0  | 17        |
| 51 | Electromagnetic Shielding Triboelectric Yarns for Human–Machine Interacting. Advanced Electronic<br>Materials, 2022, 8, .                                                                                                    | 2.6  | 16        |
| 52 | Continuous and scalable manufacture of aggregation induced emission luminogen fibers for<br>anti-counterfeiting and hazardous gas detecting smart textiles. Materials and Design, 2021, 205, 109761.                         | 3.3  | 15        |
| 53 | A Skinâ€Inspired Triboelectric Nanogenerator with an Interpenetrating Structure for Motion Sensing and Energy Harvesting. Macromolecular Materials and Engineering, 2021, 306, 2100147.                                      | 1.7  | 13        |
| 54 | Underwater Monitoring Networks Based on Cable-Structured Triboelectric Nanogenerators.<br>Research, 2022, 2022, 9809406.                                                                                                     | 2.8  | 4         |

| #  | Article                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------|-----|-----------|
| 55 | Research Progress of Fe-Based Superelastic Alloys. Crystals, 2022, 12, 602. | 1.0 | 4         |